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Preface

This book is the second edition of a book with the same title �rst published in 1988.
Traditional methods for the study of kinematics and dynamics of machines emphasized
the use of graphical methods of analysis. Anyone familiar with this approach is well
aware that the accuracy of the result depends entirely on how sharp the pencil point
is. Such a limitation cries out for a mathematical approach. The intention to utilize
analytical methods implemented with digital computer methods for a rigorous approach
to the material as intended in the �rst edition is preserved in this edition. In the three
decades since the original book was produced, digital computing has become entirely
common place and readily available. This means that very precise results are readily
available to anyone willing to write a simple computer program, often far less e¤ort than
the construction of an accurate graphical solution.

The focus on analytical methods for computer implementation leads naturally to the use
of energy methods in preference to vector methods. Vectors continue to be used where
they o¤er the most clear understanding, but most problems eventually lead to an energy
based formulation. This idea was dominant in the �rst edition, and remains so in the
second.

The entirety of the original text has been carefully reviewed, and some content reduc-
tions have been made. Some types of cam and follower systems are eliminated with the
recognition that those who want that material can still �nd it in the �rst edition which
remains in print through the print-on-demand publisher Lulu.com. The material on de-
velopment of tooth numbers for very close approximations to speci�ed gear ratios (the
Brocot Table and the Continued Fractions Approximation) are also removed but remain
available in the �rst edition.

Two new aspects are introduced in this revision: (1) extensive use of SI units, and (2)
an introduction to vibrations. Each requires some comment.

The traditional inch-pound-second system of units remains widely in use in the USA
at the present time. For the past six decades, since the launch of the Russian Sputnik
in October, 1957, the US has been poised on the verge of conversion to metric units.
The de�nition of the SI units system in the early 1960s made this conversion appear
inevitable, and most nations of the world have indeed made that conversion while the
USA has held out. Metric units have been legal for commerce in the USA for more than
a century, but they have not been made universal. There are indications that the �nal
change to SI units in the USA is coming soon due to the globalization of commerce. This
has led to an increased emphasis on SI units in American education in recent years. For
the present, engineering students in America must be conversant in both US Customary
(inch-pound-second) units and SI units. No one can say with certainty how long this
situation will continue.



In times past, the theory of machines and vibrations were considered as separate subjects
in the engineering curriculum. This was clearly re�ected in the way the two courses were
taught. In many linear vibration problems, there is only trivial kinematic complexity,
and this is the reason they were taught separately. However, in any situation in which
there is a mechanism involved, such as a four-bar linkage, a slider-crank, or other real
machine system, the need for uni�cation of these topics becomes immediately evident.

The writer�s own industrial experience in the area torsional vibrations of internal combus-
tion engine driven machine trains and reciprocating compressors has compelled him to
see a close connection between the two. The slider-crank mechanism is universally used
in internal combustion engines (except for the Wankel engine), and is a major source
of torsional vibration excitation. This area can only be correctly addressed by bringing
an analytical approach to kinematics and machine dynamics to bear on the torsional
vibration problem. This is particularly done in the �nal chapter of this edition.

Many of the homework problems posed in this second edition are new, although there
are a number carried over from the previous edition. There is a serious e¤ort to present
problems that clearly relate to actual machinery, as opposed to problems that are so
idealized as to never be seen in practice. The hope is that these problems will motivate
the student, recognizing that the purpose is to deal with reality, not idealized fantasy.

The author has received much assistance in the development of this work from many
quarters over the years. Much of the text has been reviewed by Dr. Ettore Infante,
Dr. Robert White, and Dr. Ronald Slovikoski, each of whom o¤ered valuable comments.
Much of the author�s experience with cam systems is due to work with Mr. John Andrews,
a manufacturer of automotive cams. Mr. James Hardy provided much helpful guidance
regarding electric motors. The book was composed entirely in LaTeX by use of Scienti�c
WorkPlace, with the �nal LaTeX formatting of the book developed by Dr. Thomas Price,
a most valuable contribution.

The �rst edition of this work was well received around the world, and it is hoped that
this second edition will gain even wider acceptance. To that end, the book is o¤ered on
the Internet without charge, and may be freely distributed to anyone. Proper attribution
will be appreciated.

Samuel Doughty

Dubuque, IA

March, 2019
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Dedication

This second edition is dedicated to God, the author of all
truth, knowledge, wisdom, and understanding, and
the grantor of salvation to all mankind through
His Son, Jesus Christ, our Lord and Saviour.

Venite, exultemus Domino1

O Come, let us sing unto the Lord;
let us heartily rejoice in the strength of our salvation.

Let us come before his presence with thanksgiving;
and show ourselves glad in him with psalms.

For the Lord is a great God;
and a great King above all gods.

In his hand are all the corners of the earth;
and the strength of the hills is his also.

The sea is his and he made it;
and his hands prepared the dry land.

O come, let us worship and fall down,
and kneel before the Lord our Maker.

For he is the Lord our God;
and we are the people of his pasture,

and the sheep of his hand.

O worship the Lord in the beauty of holiness;
let the whole earth stand in awe of him.

For he cometh, for he cometh to judge the earth;
and with righteousness to judge the world,

and the peoples with his truth.

1An adaptation from Psalms 95 and 96.





Revision Record
Release 1 �31 March 2019 Because of advancing age and concern that I may not
be physically able to complete this second edition in every respect, it is my intention to
release it in progressive revisions. The �rst will include a limited number of homework
problems, even though the intent is that the �nal version will contain many such problems.

As is always the case, there are no doubt errors in the text. In addition to expanding
the homework problem set, the author will be making corrections in future revisions.
This includes both errors of fact (statements that are not correct) and problems that are
thought to be impossible as stated due to lack of information or internal contradictions.
Please identify fully any errors found so that they may be corrected in the next revision
of the text. Anyone using the text who �nds an error is encouraged to write to the author
at this e-mail address:

MechanicsOfMachinesBook@gmail.com

Release 2 �All Souls Day 2019 This second release of the text is particularly
signi�cant in two aspects These are:

� Development and inclusion of a major example induction motor driven torsional
vibration instability, placed at the end of Chapter 12. It is a �tting �nal example for
many concepts discussed in this book. In particular, in a single example, it provides
a �nal application of a variety of concepts discussed in this book, including

�Utilize the improved induction motor torque-speed model developed by Gärt-
ner, building on the earlier work of Kloss;

�Demonstrate the e¤ect of including a greater number of degrees of freedom to
better approximate reality;

�Demonstrate yet again the power of numerical solution techniques applied to
ordinary di¤erential equations;

� Show the reduction of a gear coupled system to an equivalent single shaft
system;

� Show again the application of the eigensolutions and modal analysis;
�Utilize Taylor series to linearize a nonlinear system;
� Show the application of linear single degree of freedom modeling to explain
a multidegree of freedom instability by raising and applying the concept of
negative damping.

� The inclusion of an Index. While the Table of Contents (which was present in the
�rst release) enables users to get an overall understanding of the scope of the book,
the Index is extremely important to �nd discussion on speci�c items.
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In addition to these two major improvements, there have been numerous small wording
changes to improvement clarity and smoothness. As before, please identify fully any
errors found so that they may be corrected in the next revision of the text. Anyone using
the text who �nds an error is encouraged to write to the author at this e-mail address:

MechanicsOfMachinesBook@gmail.com
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Chapter 1

Introduction

1.1 Initial Comments and De�nitions

The term mechanics of machines is here understood to include the kinematics, dynam-
ics, and vibrations of mechanical systems of the type commonly found in machinery.
Introductory courses in statics and dynamics usually provide little in these areas because
of the kinematic complexity of real machines. In regard to dynamics and vibrations,
the complications of varying e¤ective inertia, multiple degrees of freedom, and geometric
complexity again limit elementary courses. In this text, these problems are all addressed
directly.

There are a number of words used in this study that need precise technical de�nitions,
despite the fact that they all have common, everyday meanings. The word machine
means a device that transmits or modi�es force or motion to do useful work. Contrast
this with the word structure, usually referring to a stationary support. Amechanism is
an assembly of mechanical components to achieve a particular motion. Thus a washing
machine (in the nontechnical sense of the word machine) involves both a structure or
frame, and a mechanism that agitates the clothes. The words mechanism and machine
are often used interchangeably, but the word mechanism tends to emphasize the motion
while the word machine points more toward the work done. Thus an engine is usually
called a machine while a clock is a mechanism.

The �rst topic of this book is Kinematics of Machines, beginning in Chapter 2. Kine-
matics is the study of motion without regard for the forces involved in the motion. After
laying a foundation in kinematics, the study moves on to Dynamics of Machines. Dynam-
ics of Machines is the study of motion and the associated forces in machines, as distinct
in most cases from astronomy or particle physics. Although the same basic principles
apply in both cases, the concrete nature of this study sets it apart from the more esoteric
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2 CHAPTER 1. INTRODUCTION

topics. Finally, the last major topic is Vibrations of Machines. Vibration of Machines
is the oscillatory motion of machine components, usually rapid and of small amplitude.
Vibration is often of concern as a cause of noise and the rapid accumulation of fatigue
cycles within the material comprising the machine components.

There are four major ideas that underlie all of the material in this book, and it is well to
point them out here so that the reader may be alert for them as they appear repeatedly
throughout the book. They are:

1. Position Vector Loop Equations �In typical machinery systems, the machine
components form closed loops that change shape as the motion proceeds, but always
remain closed. Each loop can be described as a vector sum equal to zero at all times.
If enough information has been speci�ed to determine the mechanism con�guration
uniquely, these vector equations or their scalar equivalents can be solved for the
unknown position variables.

2. Velocity Coe¢ cients and Velocity Coe¢ cient Derivatives �The velocity
coe¢ cient is a position dependent function relating an output motion velocity to
the input motion velocity. Velocity coe¢ cient derivatives are simply the derivatives
of the velocity coe¢ cients with respect to position. They are used particularly in
expressing accelerations.

3. Principle of Virtual Work�This is one of the oldest energy principles of classical
dynamics and it provides the means to de�ne system equilibrium in terms of a
generalized force acting on the system.

4. Energy Based Equations of Motion �The development of equations of motion,
based on energy considerations, is usually associated with the names of Lagrange
and, to a lesser extent, with Eksergian. These methods provide an alternative to
the application of Newton�s Second Law, an alternative that is often much more
easily applied than the vector methods of Newton.

Each of these concepts has a long history, and each can certainly be applied in hand
calculations. The maximum bene�t comes, however, when they are applied together in
a computer implementation. The solution of the position vector loop equations often
involves the numerical solution of systems of nonlinear transcendental equations. In such
a case, closed form solutions are often impossible, but numerical solutions by iterative
techniques are often required. The calculation of velocity coe¢ cients involves the solution
of a system of simultaneous linear equations. Although this is simple in concept, it is
excessively laborious for more than two equations. When applying the principle of virtual
work, it is often necessary to solve a system of nonlinear equations, and again, numerical
iteration by means of the computer is the only feasible way to proceed. Finally, it is
important to note that the equations of motion for most mechanisms are highly nonlinear
di¤erential equations. Irrespective of the methods used to obtain the equations of motion,
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solution by analytical means is usually impossible; numerical integration is required and
this is only practical when implemented in a computer code.

The whole process of writing a system of equations to describe the response of a physical
system is often calledmathematical modeling. This is to distinguish this process from
that of physical modeling in which a physical scale model is constructed. Mathematical
modeling from one point of view is simply a matter of applying the equations learned
in elementary physics to the description of the machine components. However, when
considered more carefully, it is more than that. Each of these descriptions recalled from
elementary physics carries with it particular assumptions. In mathematical modeling of
a particular system, it is important to examine these assumptions to assure that they are
appropriate to the system under consideration.

A simple example may help at this point. In elementary physics, it is common to write the
magnitude of the force developed in a spring as the product of sti¤ness with deformation,
that is, the simple linear relationship F = k � �. This is certainly true for many springs,
but it is not true for all. There are types of springs where it may be necessary to write
F = c1�+ c2 j�j �+ c3�3+ : : :When applying this relation in a mathematical model, it is
important to examine whether it is true for the particular case.

One of the most common assumptions, made in most parts of this text but certainly
not all, is that each machine component is rigid. A rigid body is understood to remain
undeformed, no matter what loads are imposed upon it. This is often a very useful
assumption, enabling an analysis to advance where it might otherwise be stymied. The
whole idea of a rigid body is, however, in con�ict with reality; in the physical world,
there are no true rigid bodies. All real physical bodies are to a degree �exible. They are
said to be compliant, meaning that they deform under load. While it is useful in many
parts of this book to assume that the parts of the system are rigid bodies, it is important
to remember that this is never absolutely true. The analyst must ask himself at every
point to what extent this assumption is satis�ed.

In the construction of machinery, it is common to use primarily two kinds of connections
(other types are considered later):

1. Pin �If two parts are allowed to overlap so that a pin may be passed through both
of them, this is referred to as a pin joint, a hinge, or other similar terminology. In
the classic terminology of kinematics this is called a revolute joint, suggesting the
idea that the two bodies may revolve independently about the axis of the pin.

2. Slider �If an extension of one body is only allowed to move in such a way that it
is guided by a rail, a groove, or similar rigid boundary on the second body, this is
called a slider because it slides along the guide. In the classical terminology, this
joint is called a prismatic joint, suggesting the ability of two prisms to slide freely
along their common generating lines while not penetrating either body.

Mechanics of Machines c 2019 Samuel Doughty



4 CHAPTER 1. INTRODUCTION

More detailed discussion of joints is provided later where the need arises.

One of the common characteristics of all physical bodies is the scalar property known
as mass. This is the property that resists acceleration when a body is acted upon by
a non-zero net force, as indicated by Newton�s Second Law of Motion written in vector
form as X

F = ma (1.1)

where

F is a force (vector) acting on the body,

m is the body mass,

a is the acceleration (vector) for the center of mass.

When rotational motion is involved, the comparable expression is usually written as in
scalar form for rotation about a particular axis b asX

Tb = Ibb�b (1.2)

where

Tb is a torque with respect to axis b acting on the body;

Ibb is known as the mass moment of inertia (MMOI) with respect to the axis b;

�b is the angular acceleration of the body about the axis b.

The mass moment of inertia is the item of most common interest in this book, and it
is de�ned by the following integral:

IMMOI =

ZZ
Body

r2 dm (1.3)

where the integration extends over the entire mass of the body. The quantity r is the
distance from the axis of rotation to the integration element.

Written in this way, the mass moment of inertia appears as a scalar quantity. It is
usually denoted as I, although the symbol J is also frequently used. From a more
advanced perspective, the mass moment of inertia is a second order tensor, representable
as a symmetric square matrix.

Finally, because it is often a source of confusion, there is also the area moment of inertia,
also often denoted either as I or J . This quantity appears in many beam problems and
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Figure 1.1: Particle in Two Dimensions

shaft torsion calculations. The polar area moment of inertia is de�ned as Jarea,

Iarea =

ZZ
SectionArea

r2 dA (1.4)

where the integration extends over the applicable cross sectional area.

1.2 Degrees of Freedom

The term degrees of freedom has long been used in classical dynamics to refer to the
number of independent variables that are required to describe the position of a mechanical
system. The concept is introduced at this point, and understanding of the term is
expected to grow with progress through the following chapters.

Consider a particle free to move in two dimensions as shown in Figure 1.1. In the upper
diagram, (a), the particle is shown with a superimposed rectangular Cartesian coordinate
system, and it is evident that the location of the particle is speci�ed by the ordered pair
(x; y). The lower diagram, (b), shows exactly the same particle in the same position, but
with a plane polar coordinate superimposed. From this diagram, it is evident that the
position of the particle is given by the ordered pair (R; �). The important point is that
no matter which coordinate system is used, there are two data items required to specify
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Figure 1.2: Single Particle in Three Dimensions

the location of the particle. The location cannot be speci�ed with less than two data
items, and there is no need for more than two. The particle is said to have two degrees
of freedom, often abbreviated as 2DOF.

In a similar manner, consider a particle allowed to move in three dimensions, such as
is shown in Figure 1.2. In the left most diagram, (a), the particle is shown with a
rectangular Cartesian coordinate system. It is evident that the position of the particle is
fully described provided the three numbers (x; y; z) are speci�ed. In the center diagram,
(b), the same particle is shown occupying the same location in space. This time, a
cylindrical coordinate system is used, and the speci�cation of the particle location is
complete with the three values (R; �; z). In the right most diagram, (c), the same particle
is again shown, with a spherical coordinate system. It is clear that in this third case,
the location of the particle is completely speci�ed by three values (R; �; �). (Note that
R is de�ned di¤erently for the spherical coordinates as compared with the cylindrical
coordinate system.) It is also evident that, for any case in three dimensions, three values
must be speci�ed and no smaller number will su¢ ce.

In Figure 1.3 (a), two particles are shown, #1 and #2, and each is free to move in two
dimensions. From the discussion above, it is evident that the system of two particles has
four degrees of freedom. The four degrees of freedom can be fully speci�ed by (x1; y1)
and (x2; y2). It is important to keep in mind that the number of degrees of freedom is
simply the number of data items required to fully specify the con�guration of the system;
it is not the coordinate system choices (rectangular Cartesian, polar, or something else),
nor is it the coordinate values themselves.

The same two particles are shown in Figure 1.3 (b), but a massless rigid link joining the
two particles has been added to the system. All that this link does is to hold constant
the distance between the two particles; they are required to always be exactly d distance
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Figure 1.3: Two Particles in Two Dimensions

apart. It is evident then, by the Pythagorean Theorem, that

d2 = (x2 � x1)
2 + (y2 � y1)

2 (1.5)

This equation is called a constraint; it expresses a constraint or extra condition that the
system must always satisfy.

Now, how many independent variables are required to specify the system con�guration
(recall that the number of degrees of freedom is the number of independent variables
required)? Imagine a process in which (x1; y1) are assigned arbitrarily; they are clearly
independent. Next, imagine that x2 is assigned at will, subject only to jx2 � x1j � d.
When this is done, the system con�guration is fully speci�ed; there is nothing left that
can be arbitrarily speci�ed. Thus there are three independent variables after the rigid
link is added to the system. The e¤ect of the constraint is remove one degree of
freedom. The preceding statement is true in most cases, but not quite all. The whole
subject is discussed in more detail in Chapter 2 under the heading Constraints. For now,
the reader should accept this as a guiding principle, to be modi�ed slightly later. Thus,
extrapolation is possible, leading to the conclusion that for a system of N particles in two
dimensions and subject to M constraints, the number of degrees of freedom is 2N �M .

Finally, consider the e¤ect of several particles with multiple constraints between them as
shown in Figure 1.4. In the upper diagram, Figure 1.4(a), there are three particles with
three rigid links between them, all constrained to move only in the X � Y plane. By the
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Figure 1.4: Several Particles Moving in Two Dimensions

reasoning of the previous paragraph, the number of degrees of freedom is expect to be

DOF = 2 (3)� 3 = 3 (1.6)

This is the familiar result from prior experience; a triangle forms the most elementary
rigid body. The critical result is that a rigid body has three degrees of freedom in
planar motion. The corresponding result in three dimensions (not demonstrated here)
is that a rigid body has six degrees of freedom in three dimensions.

If one of the rigid links, say d23, were removed, leaving only two constraints, then there
would be four degrees of freedom. These four degrees of freedom might be associated with
the coordinates as (x1; y1) to locate particle #1, then perhaps y2 to locate the second
particle and y3 to locate the third particle. This is only one of the many ways that the
coordinates can be associated with the degrees of freedom, but it demonstrates the idea
that the removal of one constraint adds a degree of freedom.

Still considering Figure 1.4, but moving to the lower diagram, the result of adding more
particles with rigid constraints is shown. It is clear that, every time an additional particle
is added with two more constraints, the result remains simply a rigid body with three
degrees of freedom. Note that it is also possible to over constrain the system, that it, to
apply more constraints than necessary to make the system rigid. This is the case in Figure
1.4(b). Do you see the unnecessary constraint(s)? This supports the idea that a typical
rigid body, composed of a vast number of particles, still has only three degrees of
freedom in planar motion and six degrees of freedom in three dimensional
motion.
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1.3 Use of Mathematics

One of the questions that must be of interest to every student of engineering is, "Who
is an engineer?" or similarly, "What de�nes an engineer?" The word engineer is used
loosely around the world to mean many di¤erent positions, including the janitor who
may be called a housekeeping engineer, the boiler operator or locomotive driver who is
often called an operating engineer, the draftsman who spends all day working on CAD
to produce drawings, the designer who actually makes decisions about how the machine
will work, or the supervisor whose only concern is with project schedules and costs. But
who is really an engineer?

In many jurisdictions around the world, the term engineer is legally de�ned as a per-
son quali�ed to design equipment. The de�nitions often mention the ability to apply
a knowledge of physical science and mathematics. The governmental bodies that make
these de�nitions recognize that the economic and safe development of the products of
modern life depend upon the ability to put to use the principles of physics, chemistry,
and other sciences. Further, it is generally appreciated that the full application of these
principles can only be done with skill in mathematics.

The sad truth is that far too many engineers do not utilize the mathematics to which
they were exposed during their formal education. This limits the professional growth of
the individual engineer just as surely as a mill stone placed around the neck of a child
will limit his growth. It means that the engineer will not advance, and society will not
have the bene�t of that engineer�s full capability.

The traditional approach to Kinematics and Dynamics has long been graphical. This has
entailed large scale layouts of mechanisms with a very sharp pencil to draw solutions.
The accuracy of such solutions is inherently limited by the accuracy of the drawing and
the width of the pencil lines. In the mechanical watch industry where the author once
worked, it was common to draw mechanisms forty times oversize (40 : 1) in order to see
part engagements and clearances.

With the microcomputer now available on every engineer�s desk, scale drawings must
be a thing of the past for several reasons. Most importantly, there is the matter of
accuracy; the microcomputer can provide almost instant solutions accurate to eight or
more digits with ease. Perhaps more importantly, the microcomputer makes it possible
to solve mechanism problems for many positions, where a graphical solution requires a
complete new drawing for each position.

One of the objectives of this book is to encourage readers to make full use of all the math-
ematics that they may know, and where necessary, to seek out additional knowledge. To
this end, complete mathematical descriptions of actual physical systems are emphasized,
while graphical solutions are ignored.
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1.3.1 Calculus

Sir Isaac Newton is usually credited with the invention of calculus. Strangely, it was an
outbreak of plague that contributed to this creation, an outbreak that interrupted his
studies at Cambridge University during the years 1665 - 1667. When he was forced to
leave the university and return to his rural home to escape the disease, the solitude of the
countryside provided the opportunity for the development of many important discoveries,
including the law of universal gravitation and di¤erential and integral calculus [1]1. The
co-inventor of calculus, Gottfried Wilhelm Leibniz, began to publish some of his �rst
work on calculus, beginning in 1684 [2].

Given the long time that calculus has been available for use, it is very sad that most
graduate engineers today make little or no use of this powerful tool. The principal
questions of kinematics, namely position, velocity, and acceleration, naturally call for
the use of calculus for their proper description. The areas of dynamics and vibrations
each resolve largely into the formulation and solution of ordinary di¤erential equations.
It is therefore entirely natural that students working in this area should expect to apply
calculus freely; it is the natural language of the subject matter.

1.3.2 Matrix Notation

Many of the problems to be encountered in this book involve vector quantities. If written
out in scalar form, there are at least two equations to be considered simultaneously, and
often many more. In some cases, it is convenient to use vector notation to formulate
such problems, but when it is time to compute numbers, vector notation does not lend
it self to digital computation because the computer cannot deal with vectors as such.
The computer can, however, readily deal with arrays of numbers, and any vector can
be represented as a one dimensional array. If a is a vector in three dimensions with
components ax; ay; and az, then these can be very neatly considered as a column vector
fag = col (ax; ay; az).

Throughout this book, matrix notation is used extensively. In particular, note that

� fag denotes a column vector (n� 1)

� (a) denotes a row vector (1� n)

� fagT denotes the transpose of fag ; fagT = (a)

� [b] denotes a rectangular array, usually square (n� n)

1See References at the end of the chapter.
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1.4. COMPUTER-AIDED SOLUTIONS 11

� dbc denotes a diagonal rectangular array (n� n)2

� dIc is the diagonal matrix called the identity matrix = diag(1; 1; 1; : : : 1)

� [b]T denotes the transpose of [b], obtained by interchanging rows and columns

� [b]�1 denotes the inverse of [b], which if it exists, is such that [b] [b]�1 = [b]�1 [b] = [I]

Matrix notation is only a notation, but it has much to recommend it. By itself, it does
nothing that could not be done in other ways, but it provides an orderly, systematic means
to deal with the computational bookkeeping problem. It adapts readily to computer
implementation in a way such that when a problem is formulated in matrix notation, the
computer code required for the solution is usually quite easily written.

1.4 Computer-Aided Solutions

Engineering analysis always revolves around problem solving of one type or another, and
the computer can be a great aid in many situations. It is a mistake, however, to ever
think that the computer can do the entire job, an attitude that often leads to much
lost time. This misunderstanding becomes obvious when the steps involved in problem
solving are considered, so a quick review is provided here.

The typical steps involved in solving a mechanics of machines problem are these:

1. Problem De�nition. This is the task of determining exactly what problem is
to be solved and what information is available to begin the solution process. Failure
to attend properly to this step often results in great loss of time!

2. Conceptual Solution. Based on the information gathered in step 1, an overall
plan of attack must be formulated. This plan is established on the assumption that
no unexpected di¢ culties arise. For this reason, the plan of attack may require
later modi�cation. Despite that possibility, there is no point at all in beginning
without at least a tentative route to the solution in mind. If a computer solution
is indicated, a rough �ow chart should be drafted at this point.

3. Detailed Analysis. The conceptual solution usually presumes that the gov-
erning equations can all be written. This is the point where that step must be
actually performed and the equations developed. It is time to establish all of the
necessary equations and put them in the form required for later use. This step

2Brackets closed at one end only, such as dbc, are intended to suggest the need only to capture the
main diagonal of the array, whereas brackets closed at both ends, like [b], suggests the need to contain
all rows and columns.
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often involves (a) the use of calculus, and (b) casting the resulting equations in
matrix form. At the end of this step, all engineers should be prepared to turn to
the computer for numerical solution.

4. Computer Implementation. This is the point where computer code is writ-
ten, debugged, and �nally executed to produce the �nal numerical results. The
need to test the code, often in pieces before requiring everything to work together,
is absolutely vital. If any part of the code fails to function, you can be assured
it will not all function together! As an example, consider a kinematics problem
that requires determining position, velocity and accelerations functions. It is wise
to assure that the position solution is correct before attempting to program the
velocity and acceleration solutions. Each depends on the part that proceeds it, and
thus errors in the early stages simply propagate into the latter parts.

5. Interpretation of Results. This is the most essential part of any analysis.
Engineering analysis is always done with a purpose �to answer a particular ques-
tion. Typical acceptable results are, (a) "The maximum velocity is 187 m/s2," or
(b) "The maximum bearing force occurs when the crank position is � = 205o," or
(c) "The arm will fail due to excessive dynamic loading." It is never su¢ cient to
submit a stack of computer output as an engineering report. Often, it is useful to
submit the computer output as an appendix to your report, and to indicate in that
output where the results appear. This indication may be done simply by circling
the results with a red pen, or it may be something you program the computer to
identify for you, such as with a row of asterisks and a label like ********* Max
Velocity.

1.5 Programming Languages

There are a great number of computer languages in use today for engineering work. The
days are long gone when FORTRAN was the standard engineering computer language,
and new languages are regularly coming into use. The primary claim for many of the
newer languages is greater execution speed. Indeed, greater speed is signi�cant for ap-
plications like real-time control and robotic systems. On the other hand, for typical
engineering desk work, it matters very little whether the execution time is measured
in microseconds or milliseconds. For this latter case, what is important is (1) ease of
program development, (2) availability of features such as matrix operations, plotting,
and other utilities. In recent years, there has been great interest in languages such as
C, C++, and other similar programs. On the other side of the fence, there are many
who prefer the use of packages such as MathCAD

R
, MATLAB

R
, Mathematica

R
, or

Maple
R
. Each of these has its own particular merits, and personal familiarity is a major

factor as well. In the hands of a skilled user, it is probable that any of these is adequate
to the tasks at hand.

Mechanics of Machines c 2019 Samuel Doughty



1.6. UNITS 13

In developing an engineering textbook, it is often useful to include sample programs to
illustrate various ideas in the text. For this purpose, a choice must be made that will
serve all users. The choice made in this case is a language called True BASIC

R
, a

version of the BASIC computer language re-worked by the original creators of BASIC,
Prof. John Kemeny and Prof. Thomas Kurtz both of Dartmouth, after receiving much
feedback. It is relatively fast, powerful, easy to use, and most importantly, the code is
rather transparent. In saying that the code is transparent, what is intended is to convey
the idea that the actions of the code are completely obvious to anyone with a computer
background. Thus a user of another language can easily read a True BASIC program �le
and know what it does. He can quickly and rather easily make whatever changes may
be required to cast the code into his preferred language.

With regard to True BASIC itself, the author has used this language for many years in
personal research, in consulting work, in work for the US Navy, and as a teaching tool.
It provides the user with excellent control and functionality. All of the common matrix
operations are available as single line statements, so it is well adapted to mechanics of
machines problems. The numerical results are usually correct to between 14 and 15
decimal digits, far more than is usually required for engineering work.

Because True BASIC was developed by mathematicians (Kemeny and Kurtz), the stan-
dard form for every replacement statement is "LET x = ..." where the LET is a re�ection
of the mathematician�s mode of speech. Because this author does not like to use LET
to begin every replacement, all the example programs begin with the statement OPTION
NOLET which simply tells the code not to expect LET. True BASIC also allows array in-
dices to begin with either 0 or 1. Beginning with 0 is usually a bad practice, so most
of the example programs include the statement OPTION BASE 1. This has the e¤ect to
set all array counters initially to 1. Both of these statements, OPTION NOLET and OPTION
BASE 1, simply become standard parts of every program.

1.6 Units

The question of what system of units to use is an continuing problem for engineering
students, educators, and practicing engineers. The large majority of the countries of the
world use the International System of Units (SI), although often not in its pure form.
In many places, it is common practice to introduce non-SI units, such as the bar for
pressure, even though it does not follow strict SI conventions. On the other side, the
USA is a major factor in world trade, and it continues to use the US Customary System
of Units (USC). This situation seems unlikely to change in the near future.

There are advantages to each system. The obvious advantage of the SI system is the
incorporation of powers of 10, with pre�xes that denote the required exponent. On the
other side, the meter is far too large a unit to use for measuring the thickness of sheet
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metal; inches are much more to the scale of most mechanical engineering matters. The
Newton is a very small force unit, while the meter is relatively large. This makes the
basic SI unit for either pressure or stress, the Pascal, extremely small. It is so small that
105 Pascal = 1 bar is just a little under one atmosphere or 14:7 pounds per square inch.
The �nal answer appears to be that, there are advantages to both systems, and both
units will continue in use for an extended time.

What this means for the student or the practicing engineer is simply this: It is necessary
to be able to work in both systems of units, depending on the situation at hand. Each
person will no doubt have their personal preference, usually for the system with which
they are most acquainted, but it will be important to be �uent in the use of both systems.

If mathematical equations are written correctly, the entire matter of units should be
transparent. All equations should be written such that they are valid in any consis-
tent system. That is the key right there, the use of consistent units throughout every
equation. Both the SI and US Customary systems are fully consistent within themselves,
so every engineer should be able to use either. One of the essential requirements, how-
ever, is to use the correct units only. Thus, if working in SI, pressure or stress should
always be expressed in Pascals (Pa), not in megapascals even if it may be convenient
to convert the �nal result to megapascals or bars. Similarly, if working in USC, mass
must always be expressed in proper mass units, namely a pound-second square per inch
(lb-s2/in), even through the unit appears clumsy and has no generally accepted name.
In USC, weight or any other force is always in pounds; in SI, weight or any force must be
in Newtons (N). The use of pressure or stress in units such as kilograms/cm2 is entirely
incorrect, and it will result in hopeless confusion.

As a general rule, problems should always be worked in the units in which the problem
data appears. This minimizes the opportunity for errors introduced in converting units.
If the given data is partly in one system and partly in another, then a choice must be
made. It is usually best to convert as little of the data as possible, again, to minimize
opportunities for error.

There is, however, one signi�cant exception to the general rule given in the previous
paragraph. If the work involves any sort of electrical or magnetic variables, the only
reasonable choice is to use SI units. The USC units for electrical and magnetic quantities
are absurdly di¢ cult to use. It is always recommended model and solve electrical or
electromechanical problems in SI units.
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Table 1.1 Unit Conversions

Quantity USC Unit SI Equivalent

Time 1 sec = 1 sec exact

Length 1 in = 0:0254 m exact

Force 1 lb = 4:448222 N

Mass 1 lb-s2

in = 175:12685 kg

Mass Moment

of Inertia 1 lb-s2-in = 0:1129848 kg-m2

Work 1 in-lb = 0:1129848 J [=]N-m

Power 1 in-lb
s = 0:1129848 W [=] N-ms

Linear Spring Sti¤ness 1 lb
in = 175:12685 N

m

Torsion Spring Sti¤ness 1 in-lb
rad = 0:1129848 N-m

rad

Linear Damping Coe¤ 1 lb
in/s = 175:12685 N

m/s

Torsional Damping Coe¤ 1 in-lb
rad/s = 0:1129848 N-m

rad/s

1.7 Unit Conversions

There are times when it is necessary to convert between SI and USC units in order to
get all of the problem data into a consistent system. In so far as possible, the most exact
conversions possible should be used. It is useful to keep in mind that 25:4mm= 1:0 inches
is an exact conversion relation for length. One of the most important physical constants
is the acceleration of gravity. While not entirely constant, it varies only slightly from
one location to another. For the purposes of this book, the value is taken as g = 9:807
m/s2, rounded from the exact value de�ned by the National Institute of Standards and
Technology (NIST) as g = 9:80665m/s2 (exact value). For USC units, the exact standard
gravity value converts to g = 386:088583 m/s2, which for most purposes is rounded to
g = 386:088 in/s2. The following table will facilitate units conversions where required.
One other constant that is useful is the atmospheric pressure. In USC units, Patm = 14:7
lb/in2, which is equivalent to the SI value Patm = 101325 Pa.
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1.8 Conclusion

The discussion about the use of calculus, matrix notation, computer problem solving,
and the matter of computer languages indicate the nature of the material to follow in
this book. It is certainly assumed that computer solutions are the ultimate goal in all
that follows. The discussion regarding degrees of freedom and generalized variables is
perhaps the most critical part of this chapter because there will be frequent mention of
the number of degrees of freedom in a particular system throughout the remainder of the
book. This is essential to understanding that which follows. The reader is encouraged to
look for all of these ideas as they develop in the remainder of the book.
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Problems

Determine the number of degrees of freedom for each of the following systems, using the
approach described in this chapter. Fully document your reasoning for each case. In
making the determination, make the following assumptions:

(a) All bodies are rigid, so there are no deformations;

(b) Belts do not slip or creep;

(c) All single-pin joints allow rotation;

(d) All bodies are free to move in two dimensions unless restraint is indicated.

In the event of an ambiguity, explain the possibilities and determine the number of degrees
of freedom for each case.
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Chapter 2

SDOF Kinematics

2.1 An Overview of the Process

This chapter addresses the kinematic analysis of mechanisms having only one degree of
freedom. Recall from Chapter 1.2, one degree of freedom means that only one primary
variable is required to fully de�ne the position of all parts of the mechanism. For a
kinematic analysis, the one degree of freedom is associated with some suitable coordinate,
the primary variable, and considered as an assigned value (an "input") for the problem.
In some cases, the problem statement may ask for solutions throughout a speci�ed range
on the primary variable, such as over one crank revolution. Such a problem statement
asks for a sequence of solutions, one for every position of the primary variable within the
range. The value of using the computer for these many solutions is obvious.

The complete kinematic analysis of a mechanism is usually understood to mean devel-
opment of equations describing the position, velocity, and acceleration of all points of
interest in the mechanism for chosen values of the primary variable, its speed, and its
acceleration. In many cases, the position, velocity coe¢ cients, and velocity coe¢ cient
derivatives (the latter two concepts yet to be de�ned) are actually preferable, particularly
if the kinematic solution is for use in a static or dynamic analysis.

Here the process is presented in some detail by means of a simple example. Later sections
in this chapter present two important common cases, the slider-crank mechanism and the
four-bar linkage. The introduction of constraints describing sliding and rolling is intro-
duced in Chapter 2.7. The �nal section discusses single degree of freedom mechanisms
with multiple loops.
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2.2 Crank-Lever Mechanism Example

For an introductory example, consider the crank-lever mechanism shown pictorially in
Figure 2.1. and in a kinematic skeleton in Figure 2.2. In Figure 2.1, the drawing looks like
the actual machine parts while in Figure 2.2, the drawing preserves only the functional
features of the mechanism, without keeping the actual shape of the parts.

Figure 2.1: Pictorial Representation of Crank-Lever Mechanism

The lever is pivoted at point P1 while the crank rotates through a full circle about point
P2. Figure 2.1 shows the crank tip engaging a slot in the lever while Figure 2.2 shows
the lever as a rod passing through a block at the crank tip. Both constructions are
possible, and they are kinematically equivalent; they produce exactly the same motion.
This simple mechanism is found in various feeder devices and other machines.

The center-to-center distance C and the crank radius R are known dimensions. If a value
is assigned to the crank angle �, the mechanism con�guration is fully speci�ed, so this is
evidently a single degree of freedom (SDOF) system. The position variables that remain
to be determined are the angle A and the distance B.

2.2.1 Position Analysis

The �rst step is to establish the position vector loop equations. Consider the three
position vectors B; C; and R shown in Figure 2.3. By vector arithmetic, it is evident
that

B�R�C = 0 (2.1)
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Figure 2.2: Kinematic Skeleton for Crank Lever Mechanism

Figure 2.3: Position Vector Loop

or, in scalar form,

B cosA�R cos � � C = 0 horizontal component (2.2)

B sinA�R sin q = 0 vertical component (2.3)

These equations, equation (2.2) and (2.3), are the nonlinear position vector loop equations
for this mechanism. The angle � is assigned, and the dimensions C and R are known,
but the secondary variables, A and B; remain unknown.

The next step is to solve these equations for A and B. In many cases, this step will
require numerical solution, but for this example, that is not the case. The possibility of a
closed form (algebraic) solution should always be considered, and developed if possible.

Eliminating B between equations (2.2) and (2.3) gives

tanA =
R sin �

C +R cos �
(2.4)

from which A can be determined using the principal value of the arctangent function.
With A then known, B is determined by solving either of the equations:

B =
C +R cos �

cosA
or B =

R sin �

sinA
(2.5)
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There are de�nitely positions for which sinA is zero, and for some proportions of the
linkage; cosA can also go to zero. Even if both of these events can occur, they do not
happen simultaneously, so B can always be evaluated using one of these expressions.
For computer implementation, an appropriate test (if abs(cos(A))<0.1 then ...)
should be included to choose the appropriate expression for evaluating B.

If the calculations are to be done numerically (in a computer), this is quite far enough.
Only if further analysis is to be done with these results should any consideration be
given to algebraically eliminating A from the calculation of B. For computer work, this
elimination is a de�nite waste of time.

2.2.2 Velocity Analysis

In performing the velocity analysis, it is assumed that the position analysis has been
previously performed and that those results are available as well as the original known
data. For this problem, this means that the known information now includes �; R;C;A;B
and _� while the unknowns now sought are _A and _B. The velocity loop equations are
obtained by di¤erentiating the position loop equations to give

_B cosA�B _A sinA+R _� sin � = 0 (2.6)
_B sinA+B _A cosA�R _� cos � = 0 (2.7)

In view of the information already known, these are actually a pair of linear simultaneous
algebraic equations in the two unknowns _A and _B. This is perhaps more clearly evident
when they are cast in matrix form as24 �B sinA cosA

B cosA sinA

358<: _A

_B

9=; = _�R

8<: � sin �cos �

9=; (2.8)

To solve these equations in closed form, it is necessary to premultiply by the inverse of
the coe¢ cient matrix on the left1. The determinant of the coe¢ cient matrix is simply
�B. The solution for the velocities is8<: _A

_B

9=; = �
_�R

B

24 sinA � cosA

�B cosA �B sinA

358<: � sin �cos �

9=;
= _�

8<: (R=B) cos (A� �)

R sin (A� �)

9=; (2.9)

1For the case of a (2� 2) matrix, Appendix 1.5 provides the closed form inverse. Because this occurs
often in simple problems, this is worth noting.
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Note that this solution shows each of the unknown velocities, _A and _B; as the product
of the primary velocity, _�, multiplied by a position dependent factor. This suggests the
de�nition of the velocity coe¢ cients as

KA (�) =
_A
_�
= (R=B) cos (A� �) (2.10)

KB (�) =
_B
_�
= R sin (A� �) (2.11)

For any value of _�, the velocity analysis is readily accomplished by simply evaluating the
velocity coe¢ cient without the need to specify a value for _�:

2.2.3 Acceleration Analysis

In order to develop the acceleration analysis, it is assumed that all of the previous results
are available. Thus the list of known data now includes C; R; �; A; B; _�; _A; _B; and
additionally, ��. The unknowns to be determined are �A and �B:

There are two approaches to the acceleration analysis; both are described here because
each gives a di¤erent insight into the process. The �rst is time di¤erentiation of the
scalar velocity loop equations (2.6) and (2.7). This gives

�B cosA� 2 _A _B sinA�B �A sinA�B _A2 cosA+R�� sin � +R _�
2
cos � = 0

(2.12)
�B sinA+ 2 _A _B cosA+B �A cosA�B _A2 sinA�R�� cos � +R _�

2
sin � = 0

(2.13)

Once again, the result is a pair of linear, simultaneous algebraic equations in the un-
knowns �A and �B; because all of the nonlinear terms involve only quantities previously
determined. As before, the linear relation is more apparent when these equations are
cast in matrix form:24 �B sinA cosA

B cosA sinA

358<: �A

�B

9=;
=

8<: 2 _A _B sinA+ _A2B cosA�R�� sin � �R _�
2
cos �

�2 _A _B cosA+ _A2B sinA+R�� cos � �R _�
2
sin �

9=; (2.14)

When this system is solved for �A and �B, and the _A and _B factors are replaced in terms
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of the velocity coe¢ cient expressions, the result is

�A = ��
R

B
cos (A� �) +

_�
2

B
[�2KAKB +R sin (A� �)] (2.15)

�B = ��R sin (A� �) + _�
2 �
K2
AB �R cos (A� �)

�
(2.16)

Equations (2.15) and (2.16) show that the accelerations, �A and �B, each consists of two
terms, one proportional to �� and a second proportional to _�

2
. The fact that this is true,

and the signi�cance of the two factors, is more evident when the second approach to
acceleration analysis is employed. For that purpose, return to the velocity coe¢ cient
relations written as

_A = _� �KA (�) (2.17)
_B = _� �KB (�) (2.18)

The accelerations are obtained directly by di¤erentiating these expressions, where the
chain-rule is required in the di¤erentiation of the velocity coe¢ cients.

�A = ��KA (�) + _�
2dKA (�)

d�
(2.19)

�B = ��KB (�) + _�
2dKB (�)

d�
(2.20)

With this approach to the acceleration analysis, it is evident that the two terms are:

(1) the velocity coe¢ cient multiplying the primary acceleration,

(2) the velocity coe¢ cient derivative multiplying the square of the primary velocity.

Looking back at the �rst approach, it can be seen that the coe¢ cients are indeed just
as described. This leads to the formal de�nition of two more functions called velocity
coe¢ cient derivatives, denoted LA (�) and LB (�)

LA (�) =
d

d�
KA (�) =

d2

d2�
A (�) (2.21)

LB (�) =
d

d�
KB (�) =

d2

d2�
B (�) (2.22)
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Figure 2.4: Normalized Plots of A (�) (full line); KA (�) (short dash); and LA (�) (long
dash) Versus �

2.2.4 Numerical Values

For numerical evaluation of this example, speci�c data are required, so the following
values are assigned:

C = 2:5 in.

R = 0:75 in.

The previous analysis is implemented numerically, and the results are plotted in normal-
ized form2 for one full crank revolution in Figures 2.4 and 2.5.

2.2.4.1 Summary of Observations

The simple Crank-Lever Mechanism analysis shows many features that are common to
other single degree of freedom system analyses. Note particularly the following points:

1. The position loop equations are developed using the known dimensional data and
understanding the primary variable to be assigned at will. These position loop
equations are solvable for the secondary variables, either in closed form or by nu-
merical means.

2To plot a function in normalized form means that the function is divided by its maxium value, so
that the extreme points on the curve lie at either +1 or -1. This has the bene�t of expanding each curve
to the largest possible view for maximum detail. It does mean that values cannot be compared between
curves. This type of plotting is used frequently in this book.
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Figure 2.5: Normalized Plots for B (full line), KB (�) (short dash), and LB (�) (long
dash) Versus �

2. The velocity analysis begins with the di¤erentiation of the position loop equations
to obtain the velocity loop equations. This di¤erentiation may be either with
respect to time to obtain the secondary velocities, or with respect to the primary
variable to obtain the velocity coe¢ cients.

3. The acceleration analysis continues with the di¤erentiation of the velocity equations
to obtain the secondary accelerations. If time di¤erentiations are employed, the
actual secondary accelerations are obtained. If the di¤erentiations are with respect
to the primary variable, the velocity coe¢ cient derivatives are obtained. Both
approaches have value in di¤erent circumstances.

4. The extreme values of the B (�) curve (Figure 2.5) set the limits on the minimum
length for the slot, remembering that there must also be room for the pin that
connects the two.

For the Crank-Lever Mechanism, the position loop equations are of the form

f1 (�; A;B) = 0 (2.23)

f2 (�; A;B) = 0 (2.24)

When these are di¤erentiated to obtain the velocity equations and those are cast in
matrix form, the coe¢ cient matrix on the left side is of the form24 @f1

@A
@f1
@B

@f2
@A

@f2
@B

35 =
24 �B sinA cosA

B cosA sinA

35 (2.25)

This is called the Jacobian Matrix for this system. The left side of equation (2.25) is
the general form for a Jacobian while the right side is simply the form for this particular
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Figure 2.6: Spring-Loaded Trammel

example. This same Jacobian is also seen in the acceleration equation solution. When
it is necessary to solve the position equations numerically, the Jacobian matrix �gures
prominently in the numerical solution process called the Newton-Raphson solution (see
Appendix 2). The appearance of the Jacobian matrix in these three related instances is
not accidental, and it is to be expected. Should it fail to appear, this is an indication
that an error has likely been made.

Whenever the Jacobian matrix is to be evaluated numerically, the same block of code,
in the form of a subroutine, should be used for each evaluation. The position solution,
velocity solution, and acceleration solution will exist only when the determinant of the
Jacobian matrix is non-zero. Positions for which the Jacobian is zero are called singular
points; these positions require special treatment.

2.3 Example: Spring-Loaded Trammel

Figure 2.6 shows a mechanism called a trammel; the complete system is shown in consid-
erable detail. The trammel consists of a single link, item 1, with two sliders that move
in guides along the x� and y� axes, items 2 and 3, respectively. The data considered
as known include L, the length of the link, m the mass of the link, Ic the mass moment
of inertia for the link with respect to the link center of mass, mx and my, the masses of
the two sliders, and K; the spring constant. The link is symmetric from end to end, so
the center of mass is at the middle of the link. For the present example, two things are
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required:

1. Express all of the system geometric con�guration in terms of a single primary
variable;

2. Express the center of mass coordinates in terms of that same primary variable.

Before attacking the problem requirements, it is well to study the given �gure in some
detail. Notice in particular that:

� The direction of the acceleration of gravity is shown, indicating that the mechanism
operates in the vertical plane;

� A spring is shown, acting on the horizontal slider;

� A force, Fy (t) ; is shown acting on the vertical slider.

Remembering that this problem is a purely kinematics problem, do any of these three bits
of information make any di¤erence? The general answer is NO, they are all irrelevant,
and this is typical of many real engineering problems. It is often necessary to sort out
irrelevant information and not let it distract attention from what is actually important.
That said, the presence of the spring does have some limited signi�cance. It suggests
that the range of motion of the horizontal slider will be limited; the spring can only be
stretched up to its breaking point. Otherwise, the presence of all of these extraneous bits
of information is simply a distraction, but they happen frequently in actual practice.

The �rst step in the kinematic analysis is the determination of the number of degrees of
freedom and the choice of a primary variable. It is quickly evident that if any one of x,
y, or � are known, then entire system con�guration is determined, and thus there is only
one degree of freedom. Similarly, any one of these three variables is a satisfactory choice
as the primary variable. For the present example, the variable � is chosen as primary,
and both x and y are then expressed in terms of �. By inspection, the secondary variable
positions are

x (�) = L cos � (2.26)

y (�) = L sin � (2.27)

Taking derivatives produces the velocity coe¢ cients and the velocity coe¢ cient deriva-
tives

Kx (�) = �L sin � (2.28)

Ky (�) = L cos � (2.29)

Lx (�) = �L cos � (2.30)

Ly (�) = �L sin � (2.31)
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The center of mass of the link is at the mid�point, so that (xc; yc) = [x (�) =2; y (�) =2].
The kinematics of this system are very simple indeed, and the center of mass values are
simply half of these values above. This completes the kinematic analysis.

2.4 Kinematics of the Slider-Crank

One of the most important common mechanisms is the Slider-Crank Mechanism. It is
the principal part of many air and steam engines, compressors, pumps, crushers, pumps,
and injectors. It is central to the diesel and gasoline engines that are so much a part of
modern life. It is shown in kinematic skeleton form in Figure 2.7. In most cases, the
crank rotates continuously in the same direction, although there are applications where
the crank motion may be oscillatory. The analysis presented here is su¢ ciently general
to apply to any slider-crank device.

As shown in Figure 2.7, the crank rotates about a �xed pivot located at the origin of the
X�Y coordinate system. The X�axis passes through the pivot point, and runs parallel
to the direction of the slider motion. Note, however, that the slider may be o¤set an
amount " as shown. The o¤set may be positive (as shown), zero, or negative. In many
applications, " = 0, but this is only a minor matter. The Y�axis is perpendicular to X
at the origin. The crank is joined to the slider by means of the connecting rod, a link
of �xed length, L. The crank radius, R, the connecting rod length, L, and the o¤set, ",
are all considered as known dimensional data. The crank angle, �, the connecting rod
obliquity angle, �, and the slider position, x, are all variables.

Figure 2.7: Kinematic Skeleton for Slider-Crank Mechanism
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2.4.1 Number of Degrees of Freedom

Before beginning the kinematic analysis, it is necessary to determine the number of
degrees of freedom associated with the mechanism. For this purpose, consider Figure
2.8. All dimensional data are known, and the process begins by assigning a value to the
crank angle, �. With this, the crank can be laid o¤, as in Figure 2.8 (a). Using the
value of the o¤set, ", the center line of the slider motion can be laid out, as in Figure
2.8 (b). The connecting rod is located by swinging an arc, centered on the crank tip
and having the radius equal to the connecting rod length, L, as shown in Figure 2.8 (c).
The intersection of that arc with the slider center line determines the second end of the
connecting rod. It only remains to draw in the slider, as in Figure 2.8 (d), to complete
the kinematic skeleton.

Figure 2.8: Construction to Demonstrate SDOF Nature of Slider-Crank

Now, look back at the process. With the dimensional data known, once the crank angle
is assigned, all other positions are fully determined. This demonstrates that there is only
a single degree of freedom in the slider-crank mechanism.

The graphical thought process just described has broad applicability; it can be adapted
to determine the number of degrees of freedom for a wide variety of mechanisms. In
every case, the central question is, "How many variables must be assigned (in addition
to the dimensional data) to graphically construct the mechanism?" The word construct
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means that known lengths or angles can be measured and laid out accordingly. Other
points must be located and lines de�ned strictly in the sense of Euclidean geometric
construction, performed using only a compass and straight edge. When this approach
is applied to systems with multiple degrees of freedom, the need to specify additional
variables becomes apparent as the construction proceeds. Except for very complicated
systems, it is rarely necessary to actually draw the construction; for most engineers a
mental construction is su¢ cient.

2.4.2 Position Analysis

As discussed in the previous section, the slider-crank mechanism position is fully deter-
mined by a single variable, here taken as the crank angle, �. The secondary variables of
interest are the connecting rod obliquity angle, �, and the slider position, x (see Figure
2.7). It is convenient to think in terms of a single position vector loop, starting at the
origin, moving out to the tip of the crank, down along the connecting rod to the slider,
dropping down the amount of the o¤set, and then returning to the origin. Based on that
loop, the following scalar loop equations are written:

R cos � + L cos�� x = 0 (2.32)

R sin � � L sin�� " = 0 (2.33)

These equations are solved for � and x to give

� = arcsin

�
R sin � � "

L

�
(2.34)

x = R cos � + L cos� (2.35)

Because the angle � can only lie in the �rst or fourth quadrants, the principal value of
the arcsine is correct. These solutions are readily checked by substitution back into the
position loop equations.

2.4.3 Velocity Coe¢ cients

The object at this point is to obtain the position dependent velocity coe¢ cients, K� (�)
and Kx (�). To this end, di¤erentiate the position loop equations with respect to � to
obtain

�R sin � �K�L sin��Kx = 0 (2.36)

R cos � �K�L cos� = 0 (2.37)
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When these two equations are recast in matrix form, the result is24 �L sin� �1

�L cos� 0

358<:K�

Kx

9=; = R

8<: sin �

� cos �

9=; (2.38)

The (2� 2) matrix on the left side of equation (2.38) is the Jacobian matrix for the
slider-crank mechanism. In Appendix 1, the closed form solution for a system of two,
simultaneous, linear equations is shown. For the present system of equations, the solution
is 8<:K� (�)

Kx (�)

9=; =
�R

L cos�

24 0 1

L cos� �L sin�

358<: sin �

� cos �

9=;
=

8<: R cos �= (L cos�)

�R sin � �R cos � tan�

9=; (2.39)

The expression for Kx (�) is further simpli�ed by using the second of the positions equa-
tions to replace R sin � with L sin�+ ". After some algebra, the �nal result is

Kx (�) = � ("+ x tan�) (2.40)

2.4.4 Velocity Coe¢ cient Derivatives

As mentioned earlier, there are two approaches to obtaining the accelerations. The
indirect approach is used here, that based on separating the accelerations each into two
terms, one dependent on the primary acceleration while the other depends on the square
of the primary velocity. To that end then, the objective at this point is to obtain the
velocity coe¢ cient derivatives. This begins by di¤erentiating equations (2.36) and (2.37)
with respect to � to obtain

�R cos � � L�L sin��K2
�L cos�� Lx = 0 (2.41)

�R sin � � L�L cos�+K2
�L sin� = 0 (2.42)

These equations are then recast into matrix form to obtain24 �L sin� �1

�L cos� 0

358<: L�

Lx

9=; =

8<: R cos � +K2
�L cos�

R sin � �K2
�L sin�

9=; (2.43)
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Figure 2.9: Normalized plots of � (�) �solid line, K� (�) �dotted line, and L� (�) �broken
line versus � for a full crank revolution

Figure 2.10: Normalized plots of x (�) �solid line, Kx (�) �dotted line, and Lx (�) �
broken line versus � for one full crank revolution

for which the solution is8<: L� (�)

Lx (�)

9=; =

8<: �R sin �= (L cos�) +K2
� tan�

�
�
LK2

� +R cos (� + �)
�
= cos�

9=; (2.44)

To illustrate the application of these equations, consider a slider-crank mechanism with
the parameters: R = 0:2850 m, L = 1:400 m, and zero o¤set. The obliquity angle and
the slider position plots are shown in Figures 2.9 and 2.10.

In Figure 2.9, the plots of �; K�, and L� versus �, the extreme values of the functions
are: �max = 0:205 rad, K�max = 0:2036 rad/rad, and L�max = 0:2080 rad/rad. Similarly,
in Figure 2.10, the extreme values are: xmax = 1:6845 m, Kxmax = 0:2908 m/rad, and
Lxmax = 0:3430 m/rad. Note the units attached to each function; these are the result of
the units of the input data, in this case, SI units for the lengths.

Mechanics of Machines c 2019 Samuel Doughty



38 CHAPTER 2. SDOF KINEMATICS

2.4.5 Motion of Points of Interest

Up to this point, the kinematic analysis has only provided information about a few
aspects of the motion, primarily the motion of the pin joints. It is common to require
information about other points within each body. Such additional points are usually
referred to as "points of interest." A typical example is the center of mass of a particular
machine component. This type of requirement is addressed here in the context of the
slider-crank mechanism, but the ideas presented are applicable to systems of all sorts.

2.4.5.1 Body Coordinate Systems

In order to deal with additional points in a mathematical description, it is necessary
to �rst have a means to describe the location of such points within the body. In the
development of the slider-crank kinematics to this point, the external coordinate system
O �XY has been used; this is usually called a global or base coordinate system. Later,
when dealing with dynamics, the global coordinates are considered to be �xed (inertial)
coordinates. What is needed to locate speci�c points within a moving part is a body
coordinate system, that is, a coordinate system �xed to the body and moving with it.

Figure 2.11: Slider-Crank Pictorial Showing Connecting Rod Body Coordinates

In Figure 2.11, the connecting rod is shown as an asymmetrical body, with the body
coordinate system U � V indicated. (The asymmetrical connecting rod form is not
uncommon in diesel engines; it is done ease of removal from the engine.) The origin of
the U �V system is at the crank pin, and the U�axis is along the connecting rod center
line. The V�axis is perpendicular to the U�axis at the origin. In every case, it is up
to the user to de�ne body coordinates as needed. They should always be located with
respect to some clearly de�ned features of the body (in this case, the origin at one of the
pin connections and the U�axis along the line between the two pin connections).
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Figure 2.12: Slider-Crank Connecting Rod Point Loci

2.4.5.2 Position

A point P having body coordinates (up; vp) is indicated. Any point in the body can be
identi�ed simply by giving the proper body coordinates for the point. The body coordi-
nates move with the body, so the location of any point in the body is a constant in that
coordinate system. For any particular point, (up; vp), there are also global coordinates,
(xp; yp) that vary with the crank angle, �. From the geometry, it is evident that

xp (�) = R cos � + up cos�+ vp sin� (2.45)

yp (�) = R sin � � up sin�+ vp cos� (2.46)

Provided the initial kinematic analysis has already been completed for � (�) and x (�), it
is a simple matter to evaluate the global coordinates for the point P .

Figure 2.12 shows the slider-crank mechanism in the position � = 2:0 and also the paths
traced by �ve equally spaced points on the connecting rod. The point at the left end is
connected to the crank, and thus travels with it in a circular path. Similarly, the point
at the right end is connected to the slider and travels with it in a straight line. Short
vertical marks denote the ends of the slider stroke. The three intermediate points on
the connecting rod each trace ovals of a sort; note that short marks perpendicular to the
connecting rod centerline denote the particular points.

2.4.5.3 Velocity

The velocity components for point P relative to the global coordinates are found by
di¤erentiation:

_xp = _� [�R sin � �K� (up sin�� vp cos�)] (2.47)

_yp = _� [R cos � �K� (up cos�+ vp sin�)] (2.48)
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From the form of these two equations, it is evident that there are two velocity coe¢ cients
for the point P ,

Kpx (�) = �R sin � �K� (up sin�� vp cos�) (2.49)

Kpy (�) = R cos � �K� (up cos�+ vp sin�) (2.50)

This is exactly analogous to the situation for the secondary variables, with the exception
that there are two velocity coe¢ cients because the point is moving in two dimensions.

2.4.5.4 Velocity Coe¢ cient Derivatives

The velocity coe¢ cient derivatives are readily determined by di¤erentiation,

Lpx (�) =
d

d�
Kpx (�)

= �R cos � � L� (up sin�� vp cos�)

�K2
� (up cos�+ vp sin�) (2.51)

Lpy (�) =
d

d�
Kpy (�)

= �R sin � � L� (up cos�+ vp sin�)

�K2
� (�up sin�+ vp cos�) (2.52)

so that, once again,

�xp = �� Kpx (�) + _�
2
Lpx (�) (2.53)

�yp = �� Kpy (�) + _�
2
Lpy (�) (2.54)

With these tools in hand, the position, velocity, and acceleration of any point in the
connecting rod can be calculated with ease.

For design studies, it may be of interest to study the path (locus of positions) for several
points as the crank sweeps out a full revolution. This is a simple matter in a computer
code that, for each crank angle, (1) evaluates the secondary variables, their velocity
coe¢ cients, and velocity coe¢ cient derivatives, and (2) calculates global coordinates,
global velocity coe¢ cients, and global velocity coe¢ cient derivatives.

2.5 Kinematics of the Four-Bar Linkage

The four-bar linkage is one of the most versatile common mechanisms. It is found in a
wide variety of machines, including clamps, oil �eld pump jacks, electric shavers, hidden
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hinges, and centerless grinders, to name only a few. The variety of motions that can be
generated with the four-bar linkage include approximate straight lines (Watt and Scott
Russel linkages), closed curves, and even circles (Galloway mechanism). This wide range
of adaptability has attracted the interest of designers of the years down to the present
day.

Figure 2.13: Pictorial Representation of Typical Four-Bar Linkage

The four-bar linkage consists of four bars or links of constant length, as the name implies.
Figure 2.13 shows a pictorial view of a typical four-bar linkage. The four links are
connected by four pin (revolute) joints. One of the links is usually stationary, in which
case, it is called the ground link, item #4. It does not look like a link in the usual sense,
but it functions exactly like the others in maintaining the distance between the two pivot
points supporting the rest of the mechanism. There are two links, each adjacent to the
ground link, #1 and #3, and opposite the ground link is the coupler link, #2. A link
that is able to rotate in a full circle is called a crank ; it is said to revolve. A link that
does not able to revolve must oscillate and is called a rocker.

Four-bar linkages are usually used in one of two ways:

1. The mechanism is used to transmit motion from one link adjacent to the ground
link (called the input link) to the other adjacent link (the output link);

2. A point on the coupler may be driven along a useful path by the input crank
rotation. That path is often called a coupler curve.

It is also possible, but relatively uncommon, for the input to a force or torque applied to
driving a speci�c point on the coupler.
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2.5.1 Classi�cation: Grashof�s Criterion

For any collection of four links, there is the immediate question as to what sorts of motion
they permit. Consider four links, where s denotes the length of the shortest link, p and q
are the two intermediate lengths, and l is the length of the longest link. For the moment,
assume that all of the lengths are distinct, that is, that no two are equal to each other,
so that s < p < q < l.

First, it is evident that for assembly (that is, in order to be able to put the joint pins in
place), it must be true that

l � s+ p+ q (2.55)

If the equality holds, then the links will assemble, but they will be unable to move. That
case is simply a structure and is of no further interest here; it is therefore assumed that
the inequality is satis�ed.

Grashof�s Theorem states that a necessary and su¢ cient condition that
at least one link will be a crank (that is, capable of full rotation), provided
that

s+ l < p+ q (2.56)

If this condition is met, the linkage is said to be a Grashof mechanism. If
the condition is not satis�ed, then the linkage is said to be non-Grashof and
no link will be a crank. Grashof�s theorem was �rst stated in 1883, but not
formally proven until 1979 [1].

For a Grashof mechanism, the location of the shortest link further assigns the mechanism
to one of three categories, remembering that there is always at least one crank in a Grashof
mechanism:

1. If the shortest link is adjacent to the ground, the mechanism is called a crank-rocker.
The link opposite the shortest link will execute an oscillatory motion only.

2. If the shortest link is the ground link, then both adjacent links are cranks capable
of full rotation. The mechanism is called a double crank mechanism.

3. If the shortest link is shortest, both of the links adjacent will be rockers, a double
rocker mechanism. The coupler will, however, be fully able to revolve.

For a non-Grashof mechanism (where the inequality is reversed), there will be no links
able to revolve, but all will be rockers only. Such a mechanism is called a triple rocker
mechanism.
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All of this is summarized in the following Table 2.1:

Table 2.1 Four Bar Linkage Types3

Case l+s
p+q

Location of

Shortest Link

Mechanism

Type

� � � � � � � � � � � �

A < 1
Adjacent

to Ground
Crank Rocker

B < 1 Ground Link Double Crank

C < 1 Coupler Link Double Rocker

D = 1 Anywhere Change Point

E > 1 Anywhere Triple Rocker

Note that, in the table above, Cases A, B, and C all satisfy the Grashof condition, while
the last Case, E, describes a non-Grashof mechanism.

If, instead of the inequality there is an equality as indicated in Case D of the table above,
the mechanism is said to be Grashof neutral, and is called a change point mechanism.
This is most easily understood in the context of a speci�c example. Consider a four bar
linkage of the change point type, at rest along the positive x�axis. The input link is
pivoted at the origin, and it is colinear with the coupler, both extending to the right.
From the extreme right, the output link extends back to the left where it connects to
the ground link. If the input link is moves counter clockwise, the left end of the coupler
must rise and move to the left. This can be accomplished by having the right end of the
coupler

(1) move up and to the left, or

(2) move down and to the left.

Either of these will satisfy the demands of the input link motion, but neither is pre-
ferred. The situation is kinematically indeterminate. In an actual physical system, if it
was already in motion, momentum would carry it through the change point, but for a
purely kinematic system, or for a physical system at rest so that there is no momentum,
the motion is completely indeterminate. The colinearity condition will occur twice per
revolution of the input link, meaning that this indeterminate condition exists twice in
every revolution of the input link.

3Adapted from [1].
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It should be noted that all the discussion of classi�cation is of very little value in terms of
analysis. The value of classi�cation is primarily in design, where it can serve as a guide
to choosing a four-bar linkage suited to a particular purpose. Thus, for example, if an
application requires that the output link be able to revolve in response to a revolution
of the input link, then only Grashof linkages will be suitable, and of those, only choices
where the ground link is shortest will do the job.

2.5.2 Position Loop Equations

The four-bar linkage is a single degree of freedom mechanism. This is readily seen by
mentally applying the "graphical construction" test described earlier in this chapter to
the crank-lever and slider-crank mechanisms. It is most often convenient to associate
the one degree of freedom with the angular position of the input crank. It is on this
basis that the position, velocity, and acceleration analyses are now developed for the
four-bar linkage. The equations developed in the position analysis do admit of closed
form solutions (see Crossley [2] and also Shigley and Uicker [3] for this solution), but
the process is not very enlightening and a bit unwieldy. Instead, the opportunity is
taken here to introduce a general numerical technique, the Newton-Raphson Method,
for solving the position equations. This method is developed in Appendix 2 for those
wanting more mathematical detail

For purposes of analysis, consider the four-bar linkage shown in Figure 2.14 where

C1 = length of input link

C2 = length of the coupler link

C3 = length of the output link

C4 = length of the ground link

� = input crank angle

� = coupler angle

� = second crank angle

Note that there are other possible choices for the angle of the output link, all equally
workable. The choice made here has the small advantage that all of the angles are
acute and therefore the deduction of the proper terms for the position loop equations is
easier. As usual, the input variable, � is understood to be speci�ed, along with all of
the dimensional values, C1; C2; C3, and C4. The objective is to write equations for the
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Figure 2.14: Kinematic Skeleton for Four-Bar Linkage

determination of � and �, the two secondary variables. The position loop equations are

f1 (�; �; �) = C1 cos � + C2 cos�+ C3 cos � � C4 = 0 (2.57)

f2 (�; �; �) = C1 sin � + C2 sin�� C3 sin � = 0 (2.58)

2.5.2.1 Newton-Raphson Solution

The solution of these equations is not self-evident. As mentioned earlier, a numerical
procedure called the Newton-Raphson Method is to be used to solve these equations.
The details of the Newton-Raphson solution are given in Appendix 2 and should be
reviewed at this point if unfamiliar. In the notation of the development given in the
Appendix, the vector of unknowns is called fSg for secondary variables,

fSg =

8<: �

�

9=; (2.59)

and the residual vector is fFg,

fFg =

8<: f1 (�; �; �)

f2 (�; �; �)

9=; (2.60)

The Jacobian matrix, [J ], for this system is determined by partial di¤erentiation, with
the result

[J ] =

24 @f1
@�

@f1
@�

@f2
@�

@f2
@�

35 =
24 �C2 sin� �C3 sin �

C2 cos� �C3 cos �

35 (2.61)
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Using the residual vector fFg and the Jacobian [J ] just de�ned, the position loop solution
may be computed iteratively to any required degree of precision. This is demonstrated
in an example problem that follows shortly.

One requirement for the application of the Newton-Raphson method is an initial esti-
mate for the solution. This estimate may be obtained in many possible ways, including a
rough calculation, scaling of a graphical solution, or simply a good guess; any reasonably
close initial estimates will su¢ ce because the process converges for a wide range of initial
estimates. Conversely, the better the initial estimate, the more rapidly the process con-
verges to an acceptable solution. If the initial estimates are too far a�eld, the solution
may well converge to another solution, one that is not useful for present purposes.

2.5.2.2 Kinematic Singularity

There are situations where assigned values of the input angle lead to impossible geome-
tries. Most often this happens when the system simply cannot be assembled in the
position assigned. To see a speci�c example of this, consider the four-bar linkage shown
in Figure 2.14 for which the link lengths are

C1 = 1:4379 C3 = 1:6641

C2 = 2:3365 C4 = 3:5000

where the units are irrelevant; only the ratios of the link lengths are relevant. First look
at the Grashof criterion:

s+ l

p+ q
=
1:4379 + 3:5000

1:6641 + 2:3365
=
4:9379

4:0006
> 1 (2.62)

Since the ratio is greater than 1, it is evident that this is a non-Grashof linkage, and no
link will revolve. If none revolve, then there will be de�nite limits to the motion, and the
system is a triple rocker. How do the limits occur?

In this example, the limiting conditions are rather easy to visualize; they happen when
the coupler link aligns with either the input or output link. This exact linkage is shown
in a multi-position plot in Figure 2.15. Imagine the input link starting at the initial
position, � � �99:6500o. In that position, the coupler link is aligned with the output
link, with � = �� � 20:75o. It is not possible for � to become any more negative without
stretching the coupler link �output link combination. This is a kinematic singularity.

Next, consider the input link to move in a counter clockwise sense, causing the coupler
to move upward and to the right as shown in the early intermediate positions. At
� � 20:10o; the input link and the coupler become colinear. This results in another
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Figure 2.15: Motion of Four-Bar Linkage Showing Singular Con�gurations

kinematic singularity, with � � 86:19o. There is no possibility of a greater value for � as
this would necessitate stretching the input link and coupler combination.

Finally, as the input crank continues to move counter clockwise, at � � +99:6500o, the
motion is again stopped, another kinematic singularity. This is simply the mirror image
of the starting position, so the angles are just the negatives of those at the beginning.
Note that, as demonstrated, no link is able to fully revolve, and the mechanism is truly
a triple rocker.

One of the important characteristics of a kinematic singularity is the vanishing of the
Jacobian determinant. Thus, at the singular positions, the value of the Jacobian goes
to zero and the Jacobian matrix cannot be inverted. This means that the position
loop equations, as written in equations (2.57) and (2.58), cannot be solved by Newton-
Raphson. Kinematic singularities require special handling. If a conventional position
loop solution is attempted by Newton-Raphson but the Jacobian is found to be zero (or
any extremely small value), a singular condition should be suspected.

Program FourBar.Tru, Newton-Raphson Solution for the
Four-BarLinkage

100 ! FourBar.Tru
101 OPTION NOLET
102 OPTION BASE 1
103 DIM x(2),f(2),d(2),jac(2,2),jaci(2,2)
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104 img$=" theta = +###.### deg alpha = +###.### deg beta = +###.### deg"
105 CLEAR
106 c1=1.4370
107 c2=2.3365
108 c3=1.6641
109 c4=3.5000
110 th1=-99.65*pi/180 ! extreme angle
111 alpha1=20.7527*pi/180 ! known from separate
112 beta1=-20.7527*pi/180 ! solution
113 th=th1
114 x(1)=0.5 ! starting solution estimates
115 x(2)=-0.18
116 ! Print initial extreme position
117 PRINT using img$: th1*180/pi,alpha1*180/pi,beta1*180/pi
118 ! Begin Newton-Raphson for intermediate positions
119 jmx=11 ! number of interior positions
120 itmx=30 ! max number of iterations allowed
121 FOR j=1 to jmx
122 th=-1.7+(j-1)*3.4/(jmx-1)
123 FOR i=1 to itmx
124 alpha=x(1) ! extract current estimates
125 beta=x(2)
126 f(1)=c1*cos(th)+c2*cos(alpha)+c3*cos(beta)-c4
127 f(2)=c1*sin(th)+c2*sin(alpha)-c3*sin(beta)
128 fsq=f(1)^2+f(2)^2 ! f-squared
129 IF fsq<1e-12 then EXIT FOR ! normal exit
130 jac(1,1)=-c2*sin(alpha) ! evaluate Jacobian
131 jac(1,2)=-c3*sin(beta)
132 jac(2,1)=c2*cos(alpha)
133 jac(2,2)=-c3*cos(beta)
134 MAT jaci=inv(jac)
135 MAT d=jaci*f ! calculate adjustment
136 dsq=d(1)^2+d(2)^2 ! d-square
137 MAT x=x-d ! revised solution estimates
138 IF dsq<1e-14 then
139 PRINT " i = ";i
140 PRINT " f-square = ";fsq
141 PRINT " d-square = ";dsq
142 PRINT " d-square too small, solution stalled"
143 STOP
144 END IF
145 IF i=itmx then
146 PRINT " fsq = ";fsq
147 PRINT " exceeds iteration limits, no solution"
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148 STOP
149 END IF
150 NEXT i
151 alpha=x(1) ! extract converged values
152 beta=x(2)
153 PRINT using img$: th*180/pi,alpha*180/pi,beta*180/pi
154 NEXT j
155 ! Print solution for final extreme position
156 PRINT using img$: -th1*180/pi,-alpha1*180/pi,-beta1*180/pi
157 END

The computer listing shown above illustrates the application of the Newton-Raphson
solution technique for the intermediate positions; the extreme positions are understood
to have been previously determined by a di¤erent program. There are a number of
comments to be made regarding this program.

1. The program is written in True BASIC, and is entirely executable exactly as printed
here.

2. The line numbers are entirely unnecessary; they are provided only for ease in dis-
cussing the code. They can be removed completely without a¤ecting the program
at all.

3. The �rst line, #100, is a comment, giving the name of the program. It is not
executable.

4. The next line, #101, eliminates the requirement for LET at the beginning of each
replacement statement.

5. Line #102 declares the starting index for all arrays to 1 (the option 0 is also
allowed).

6. Line #103 declares the several arrays that will be used.

7. Line #104 de�nes the format for the output list that will be the �nal result of the
calculation.

8. Line #105 simply clears the screen.

9. Lines #106 �#109 declare the problem data, the link lengths.

10. Lines #110 �#112 state the extreme position solution found by means of another
program; this is taken as input data for this program to be included in the �nal
listing for completeness.

11. Line # 113 sets the initial value of th=th1, the starting value for � = �1:
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12. Lines #114 and #115 assign the starting estimates for � and � equal to the values
for the extreme position.

13. Line #117 prints the �rst output, the solution for the initial extreme position.

14. Line #119 speci�es the number of interior positions.

15. Line #120 speci�es the maximum number of iterations allowed for any single solu-
tion.

16. Line #121 begins the sweep through the interior solutions in 11 steps.

17. Line #122 assigns the value of � for each solution, varying � in steps of 0:34 radians.
It is written in this form because in program development, it was convenient to vary
the number of steps, and this form simply speci�es the prescribed number of equal
increments.

18. Line #123 begins the inner loop to execute the Newton-Raphson iterative solution.

19. Lines #124 and #125 extract the values of � and � from the vector of unknowns,
x(), so that they may be used to express the functions f1 and f2 in the customary
notation.

20. Lines #126 and #127 evaluate the functions f1 and f2 de�ned by the loop equations.

21. Line #128 calculates jf j2 to be used in the termination test of line #129.

22. Lines #130 �#133 evaluate the Jacobian matrix to be inverted in line #134.

23. Line #135 calculates the adjustment vector fdg ; and line #136 evaluates jdj2.

24. Line #137 calculates the latest revision of the solution estimates.

25. Lines #138 �#144 test for termination based on a small adjustment and print
warnings before stopping execution.

26. Lines #145 �#149 end the process when the number of iterations exceeds the
allowed limit, along with printing a warning.

27. Line #150 sends the Newton-Raphson process back to the beginning.

28. If the solution process gets to line #151, the solution is understood to be fully
converged and the values are extracted for output at line #153.

29. Line #154 send the angle sweep back to the beginning, line #121, to be executed
for the next angle. Note that, in so doing, the last solution found becomes the initial
estimate for the next position. This works extremely well provided the positions
are fairly close to each other.

30. Line #156 prints the �nal extreme position solution to complete the table.
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31. The results from the computer code are presented as a table such as that shown
below. Please note that, for output only, the angles are expressed in degrees, but
for all computations, the angles are in radian measure.

Table 2.2 Output from FourBar.Tru

theta = - 99.650 deg alpha = + 20.753 deg beta = - 20.753 deg

theta = - 97.403 deg alpha = + 28.745 deg beta = - 10.434 deg

theta = - 77.922 deg alpha = + 47.858 deg beta = + 11.342 deg

theta = - 58.442 deg alpha = + 57.389 deg beta = + 26.544 deg

theta = - 38.961 deg alpha = + 60.306 deg beta = + 42.587 deg

theta = - 19.481 deg alpha = + 55.515 deg beta = + 60.384 deg

theta = + .000 deg alpha = + 43.904 deg beta = + 76.816 deg

theta = + 19.481 deg alpha = + 30.331 deg beta = + 85.569 deg

theta = + 38.962 deg alpha = + 18.769 deg beta = + 84.124 deg

theta = + 58.442 deg alpha = + 9.353 deg beta = + 74.580 deg

theta = + 77.922 deg alpha = + .434 deg beta = + 58.766 deg

theta = + 97.403 deg alpha = - 13.537 deg beta = + 31.849 deg

theta = + 99.650 deg alpha = - 20.753 deg beta = +20.753 deg

2.5.3 Velocity Coe¢ cients

The velocity coe¢ cients are determined in the conventional manner by di¤erentiating
the position loop equations (2.57) and (2.58) with respect to the input angle �, to give

[J ]

8<:K� (�)

K� (�)

9=; = C1

8<: sin �

� cos �

9=; (2.63)

where [J ] is the Jacobian matrix, expressed in equation (2.61), K� (�) and K� (�) are the
velocity coe¢ cients for the two angles. Providing the mechanism is not in a kinemati-
cally singular position, there is no di¢ cult in solving this system of equations. As the
mechanism approaches a singular position, the velocity coe¢ cients should be expected
to become unbounded.
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Figure 2.16: � (�) �solid line, K� (�) �short broken line, and L� (�) �longer broken line
Versus � for the Linkage of Figure 2.14

2.5.4 Velocity Coe¢ cient Derivatives

Another di¤erentiation of the position loop equations provides the system of equations
solvable for the velocity coe¢ cient derivatives:

[J ]

8<: L� (�)

L� (�)

9=; = C1

8<: cos �sin �

9=;+ C2K
2
� (�)

8<: cos�sin�

9=;+ C3K
2
� (�)

8<: cos �

� sin �

9=; (2.64)

where again [J ] is the Jacobian matrix, L� (�) and L� (�) are the unknown velocity
coe¢ cient derivatives, and all of the right side terms are known from previous evaluations.

f1 (�; �; �) = C1 cos � + C2 cos�+ C3 cos � � C4 = 0 (2.65)

f2 (�; �; �) = C1 sin � + C2 sin�� C3 sin � = 0 (2.66)

The usual sets of three curves for the secondary variables are shown for the linkage of
Figure 2.14 with the link lengths as stated in the singularity discussion above.

An examination of the Jacobian determinant shows that it is positive at all locations
between � � �99:6500o and � � +99:6500o, but gets extremely close to zero at each end.
This is exactly as expected.

2.6 Coupler Point Motions

Much of the interest in four-bar linkages arises from the vast assortment of possible
motions generated by points on the coupler link. In order to discuss this, consider the
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Figure 2.17: � (�) �solid line, K� (�) �short broken line, and L� (�) �longer broken line
Versus � for the Linkage of Figure 2.14

speci�c four-bar linkage shown in Figure 2.18, a crank-rocker mechanism. This �gure is a
hybrid form, partly kinematic skeleton but partly pictorial in that it shows the outline for
the coupler link, an extended body encompassing far more than simply the line between
the two connecting pins.

Figure 2.18: Four-Bar Linkage With Body Coordinates and Coupler Points

In order to describe the location of coupler points, a body coordinate system is the
preferred approach; such a body coordinate system is shown in Figure 2.18. Note that the
origin of the body coordinates is at the tip of the input link, with the U�axis extending
through the tip of the output link. The V�axis is then perpendicular at the origin. Any
point on the extended coupler is clearly located by the body coordinate pair (up; vp) as
indicated on the �gure. Remember that, by de�nition, a body coordinate system moves
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with the body, so that a point �xed in the coupler has constant body coordinates, even
though the coupler link itself moves.

The �rst concern for the body point P is to establish the global (or base) coordinates for
the point by a process similar to that used in Section 2.3.5 for the slider-crank mechanism.
It is assumed that the initial analysis is complete, giving values for � (�) ; � (�) ; K� (�),
K� (�), L� (�), and L� (�) for any input angle � of interest. The, by a process exactly like
that used previously for the slider-crank, the global coordinates for point P are written:

xp (�) = C1 cos � + up cos� (�)� vp sin� (�) (2.67)

yp (�) = C1 sin � + up sin� (�) + vp cos� (�) (2.68)

The velocity coe¢ cient equations are obtained by di¤erentiation of equations (2.67) and
(2.68) to give

Kpx (�) = �C1 sin � �K� (�) [up sin� (�) + vp cos� (�)] (2.69)

Kpy (�) = C1 cos � +K� (�) [up cos� (�)� vp sin� (�)] (2.70)

Yet another di¤erentiation gives the velocity coe¢ cient derivative expressions:

Lpx (�) = �C1 cos � � L� (�) [up sin� (�) + vp cos� (�)]

�K2
� [up cos� (�)� vp sin� (�)] (2.71)

Lpy (�) = �C1 sin � + L� (�) [up cos� (�)� vp sin� (�)]

�K2
� (�) [up sin� (�) + vp cos� (�)] (2.72)

Figure 2.19 illustrates two coupler point curves for the linkage of Figure 2.18 where the
data are

C1 = 2:0 C2 = 5:0

C3 = 5:0 C4 = 4:0

The two coupler points considered have body coordinates: P = (6:2; 2:4) and Q =
(10:0; 0:0).

The two closed curves are traced out by the two points as the input crank goes through
a full revolution. The lengths of the dashes is proportional to the coupler point speed
at each location, with a longer dash representing more rapid motion. The point P was
chosen at random, and there is nothing of particular interest about its coupler curve.
The point Q is another matter. For Q, note that

� The lower side of the loop is almost (but not quite) exactly straight;
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Figure 2.19: Two Coupler Point Curves for the Linkage of Figure 2.18

� The lower side is traced at nearly constant speed,

� The upper side of the loop is essentially a quick return motion.

The (nearly) straight line motion of the Q� curve is a matter of considerable interest
as straight line motion is often required in manufacturing automation operations. The
(nearly) straight line motion of the Q� curve, coupled with the nearly constant speed
and the quick return action suggest that this might be a suitable candidate for moving a
paint sprayer that needs to repeatedly make passes over a �at surface.

2.7 Constraints

When the word constraint is used in reference to the motion of a mechanical system, it is
an acknowledgement that there are forces acting in the system that cannot be known until
the motion is fully known. These forces act to constrain, that is, to limit, the motion in
some way. Consequently, the resulting limitation itself must enter the motion description,
in place of the unknown, and unknowable, forces. If the system motion is to be described
by the application of Newton�s Second Law with the appropriate kinematical relations,
the discussion of a constraint indicates that there are unknown forces that cannot be
included in the force sums. Instead of including the forces, it is necessary to include
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the e¤ects that they produce. Usually this takes the form of one or more additional
equations that describe the result of the unknown forces. An example helps to establish
the concept.

Consider a wheel in a vertical plane rolling in a straight line on a horizontal plane surface.
Initially, it might be suggested that this system has two degrees of freedom, one associated
with the location of the wheel center (x), and the second with the wheel angular position
(�). If there is no friction between the wheel and the supporting surface, the wheel
motion can be any combination of rolling and sliding. For that case, it is correct that
there are two degrees of freedom.

If on the other hand the plane surface is perfectly rough, no sliding is allowed. The
term perfectly rough means that there exist whatever forces may be required to prevent
sliding, even though the magnitude of that friction force cannot be determined until the
motion is known. For the perfectly rough plane, the e¤ect of the friction force is to create
a direct relation between the displacement (x) and the wheel rotation (�). No sliding
implies that the relative velocity between the contact point on the wheel and the contact
point on the wheel is zero:

R
d�

dt
� dx

dt
= 0 (2.73)

or, after integrating,
R�� x+ constant = 0 (2.74)

Either equation (2.73) or (2.74) may be called the equation of constraint. In this example,
the equation of constraint reduces the number of degrees of freedom from two to one.
Such a reduction is often the case, but not always; read on.

All constraints are classi�ed into one of two categories. They are:

� Holonomic Constraints, which always reduce the number of degrees of freedom;

� Nonholonomic Constraints, which by de�nition do not reduce the number of degrees
of freedom.

They are also classi�ed according to forms, thus:

1. Finite equality constraints (such as equation (2.74)) which are always holonomic
and thus reduce the number of degrees of freedom;

2. Inequality constraints which are always nonholonomic but often present little di¢ -
culty as shown below by example;
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3. Di¤erential constraints which may be either holonomic or nonholonomic, depending
upon their exact form.

Here the second and third types are brie�y discussed before returning to the �rst type
in more detail.

As an example of the second type, the inequality constraint, consider the motion of a
projectile toward a spherical target centered on the origin of coordinates. The equations
of motion formulated for this problem apply only while the projectile is outside the target.
When the projectile penetrates the target, di¤erent equations of motion are required to
describe the penetration process. Thus, if the projectile position in three dimensions is
(x; y; z), the equations of motion for the free �ight apply only while

x2 + y2 + z2 > R2 (2.75)

where R is the radius of the spherical target. In solving the motion problem, the solution
proceeds with no attention to the inequality constraint other than checking whether it is
satis�ed or not. It does not enter into the solution of the di¤erential equations, except
to specify a point where the solution ceases to be valid. This is the typical handling of
inequality constraints.

For the third type, the di¤erential constraint, the condition may be, or may not be,
holonomic. Suppose the di¤erential constraint is of the form

cx dx+ cy dy + cz dz = 0 (2.76)

If this form, equation (2.76), is the exact di¤erential of some function, f (x; y; z), then
equation (2.76) must be equivalent to

df =
@f

@x
dx+

@f

@y
dy +

@f

@z
dz (2.77)

which means that equation (2.76) could (in principle) be integrated to �nd f (x; y; z).
That last, being a �nite form, reduces the number of degrees of freedom, so that equation
(2.76) is discovered to have been a holonomic constraint. The conditions under which a
di¤erential form can be integrated are described in textbooks on di¤erential equations
[4]. In the event that it is not possible to integrate the di¤erential form, then no function
f (x; y; z) exists satisfying equation (2.76) and that di¤erential form must represent a
nonholonomic constraint.

In mechanical systems, nonholonomic constraints are most often associated with rolling
contacts. There are three classic problems commonly used to illustrate nonholonomic
constraint, although they are not the only possibilities. They are (1) a sphere rolling on
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a rough plane, (2) a coin rolling on a rough plane, and (3) a pair of wheels on a common
axle where both wheels roll on a rough plane. As a variation on the third problem,
consider two skates moving on ice while rigidly joined by a sti¤ rod perpendicular to
both of them.

2.7.1 Example: Sphere Rolling on Rough Plane

Consider a solid sphere of radius R rolling without slipping on a rough
level plane. For any rigid body moving freely in three dimensions, there are
six degrees of freedom requiring six generalized coordinates. It is common
to associate three of these coordinates with the location of the center of the
sphere, while the other three are associated with the angular orientation of the
body. For the sphere on the plane, the constraint of continued contact with
the plane imposes one equality constraint (z = R), reducing the number of
degrees of freedom to �ve. The condition of rolling without slipping provides
one more constraint, so how many degrees of freedom does the system have?

De�ne a stationary rectangular Cartesian coordinate system with x � y parallel to the
plane and the origin at the level of the center of the sphere while the z�axis points
upward, away from the plane. Let i; j, and k denote the usual unit vectors associated
with the x; y; and z axes. Then the angular velocity of the sphere must be expressible as

! = !xi+ !yj+ !zk (2.78)

where !x; !y; and !z are functions of the three angular coordinate rates _�; _�; and _ . The
vector to the point of contact between the sphere and the plane is �, and the velocity of
the contact point is _�:

_� = _xi+ _yj+ ! � (�Rk) (2.79)

The sphere must remain in contact with the plane, so the z� component of _� must be
zero. Further, since the sphere rolls without slipping, the other two components of _�
must also be zero. This gives two more equations of the form

f1

�
_x; _y; _�; _�; _ 

�
= 0 (2.80)

f2

�
_x; _y; _�; _�; _ 

�
= 0 (2.81)

These two equations of constraint are nonintegrable and therefore nonholonomic. Thus
the answer to the question is that the system requires �ve generalized coordinates but it
has only three degrees of freedom. This is the typical situation; nonholonomic systems
usually require more generalized coordinates than the number of degrees of freedom.
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This presentation of the rolling sphere problem has, of necessity, been somewhat sketchy
to avoid the need for Euler angles and other advanced concepts. For those who wish to
pursue the matter further, these three classical examples are discussed in a number of
other texts [5; 6; 7; 8].

2.7.2 Two Dimensional Rolling Constraint

One of the common constraints encountered in the mechanics of machines is the two
dimensional rolling constraint. This refers to the two dimensional problem of one body
rolling along a �xed line on the other, such as the rolling along the ground or one gear
rolling around another. The problem of the wheel rolling along the ground was brie�y
discussed at the beginning of the discussion on constraints. In that case, the equation of
constraint was �rst written in di¤erential form, and then the equivalent �nite form was
written. For two dimensional rolling problems such as this, the equation of constraint
can always be written in �nite form, and thus the two dimensional rolling constraint
is always holonomic. This means that the constraint equation can always be used to
eliminate one of the coordinates as well as a degree of freedom, keeping the number of
degrees of freedom and the number of generalized coordinates equal.

In the earlier discussion, to assure rolling motion, the surfaces in contact were described as
perfectly rough. This implies that there is su¢ cient shear force available at the surface
to prevent sliding under all conditions. In reality, there are no perfectly rough plane
surfaces. Problems in elementary mechanics are often solved �rst by assuming that there
is no slip, and then after the resulting motion is determined, the required friction force
is determined. If it exceeds the available friction force, then the problem must be solved
again with the assumption that slip is occurring.

The primary device used in machinery to assure that slip does not occur, and thus to
approximate a perfectly rough surface, is to cut mating teeth into the two bodies over
the contact zone. If the two bodies are disks, the result is a pair of gears. IF one body
is straight while the other is a disk, the result is a rack and pinion. For properly formed
teeth, the teeth do not a¤ect the motion at all other than to assure that no slip occurs.
The matter of proper tooth forms for gears and racks is considered in Chapter 5. For the
present, it is su¢ cient to consider a gear as a perfectly rough wheel. The e¤ective radius
of a gear is known in gear terminology as the pitch radius.

The introduction of a rolling constraint slightly modi�es the established procedure for
kinematic analysis. With constraints involved, the combined set of position loop equa-
tions and constraint equations must be solved simultaneously for the secondary variables.
For the velocity coe¢ cients and velocity coe¢ cient derivatives, the constraint equations
are di¤erentiated along with the position loop equations and again included in the solu-
tions. This process is illustrated in the example problem that follows. For this example,
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the initial assembly position plays a signi�cant role as is often the case.

2.7.3 Example: Rolling Constraint

Consider a system comprised of a disk rolling without slipping along a rail
such as shown in Figure 2.20. The disk is moved by pulling the connecting link
that passes through the eye-block and is pinned to the wheel. The radii R and
r are known values. Figure 2.20 (a) shows the system as originally assembled
(subscripts o), where the length So is known. In the original position, the
connecting link pin is directly above the contact between the disk and the
rail. In the original assembly position, the connecting link extends to exactly
the eye-block pivot. As the connecting link is drawn through the eye-block,
the disk rolls to the left to a position such as that shown in Figure 2.20 (b).
Set up all equations required to determine the secondary kinematic variables.

Figure 2.20: System With Rolling Constraint: (a) Initial Position, (b) Displaced Position

Consider �rst the original assembly position. Su¢ cient information is provided to deter-
mine Bo and the angle �o as follows:

Bo =
�
S2o + (R + r)2

�1=2
(2.82)

�o = arctan [(R + r) =So] (2.83)

There is no disk rotation in the original assembly position.
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Next, turn to the displaced position as shown in Figure 2.20 (b). There is one degree
of freedom, here associated with the length z, the amount of the connecting rod drawn
through the eye-block. There is one position loop, from which the loop equations are

(Bo � z) cos�+ r sin � � S = 0 (2.84)

(Bo � z) sin�� r cos � �R = 0 (2.85)

The secondary unknowns appearing in the two position loop equations are �; �; and
S. The necessary third is equation is the constraint expressing rolling without slipping.
Along the rail, the point of contact moves a distance So � S; on the curved edge of the
disk, the point of contact moves a length R�: These two distance must be the same for
rolling without slipping, so

So � S �R� = 0 (2.86)

After Bo and �o have been evaluated using equations (2.82) and (2.83), the system of
equations to be solved simultaneously for �; �; and S are equations (2.84), (2.85) and
(2.86). A closed-form solution for these three equations may be sought, or a numerical
solution by Newton-Raphson solution may be used.

The determination of velocity coe¢ cients and velocity coe¢ cient derivatives proceeds in
the usual fashion, with the constraint equation di¤erentiated at each step along with the
loop equations.

2.8 Multiloop Mechanisms

All of the mechanisms considered to this point are described in terms of a single position
vector loop (two scalar equations) and have only one degree of freedom. This might
suggest that one degree of freedom necessarily implies a single position vector loop, but
that is not correct. In this section, multiloop, single degree of freedom mechanisms are
addressed by means of an example. For multiple loops, the procedure for kinematic
analysis is much the same as for the single loop case, except that more equations are
required.

In writing the position loop equations, note that the loops used must be independent. In
the example following, a kinematic analysis is developed for a single degree of freedom
mechanism involving two independent position vector loops. Additional loops can be
identi�ed, but they are not independent. For independence, each loop must include some
segment not a part of any other loop.
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2.8.1 Four-Bar/Toggle Linkage

Figure 2.21 shows the kinematic skeleton for a mechanism sometimes used
for a punch press. For this purpose, the input crank pivoted at the upper left
is driven by a prime mover, usually with a large �ywheel, while the punch tool
is attached to the slider at the bottom of the diagram. For each revolution of
the input crank, the tool executes one punch cycle. The link lengths R, C1,
C2; C3, and C5 are known, as is the input crank pivot location, (x1; y1). The
single degree of freedom is associated with the input crank rotation angle, �.
Set up the equations governing the secondary variable positions and velocity
coe¢ cients.

Figure 2.21: Four-Bar / Toggle Linkage

2.8.1.1 Position Analysis

The two loops to be used for this analysis are identi�ed in Figure 2.21. There is a third
loop, obtained by tracing around the outside of the mechanism, but the equations de-
scribing the third loop are merely linear combinations of the equations determined for the
�rst two loops; they contain no new information and are, therefore, dependent equations.
As usual,the position loop equations are determined by summing displacements around
each of the two independent loops. Each sum begins at the origin of coordinates (upper
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right corner of the �gure), but that is just for convenience and is certainly not required.
With two vector loops, four scalar position loop equations are obtained, as shown here:

f1 = x1 +R cos � � C2 cosA2 � C3 sinB3 = 0 (2.87)

f2 = y1 +R sin � + C2 sinA2 � C3 cosB3 = 0 (2.88)

f3 = C3 sinB3 � C5 sinB5 = 0 (2.89)

f4 = C3 cosB3 + C5 cosB5 � y = 0 (2.90)

This is a set of four simultaneous, nonlinear equations in the four unknowns A2, B3, B5
and y, numerically solvable for any assigned value of �. For a Newton-Raphson solution
for this system of equations, the vector of secondary kinematic unknowns is

fSg = col(A2; B3; B5; y) (2.91)

and the Jacobian matrix is

[J ] =

26666666664

C2 sinA2 �C3 cosB3 j 0 0

C3 cosA2 C3 sinB3 j 0 0

��� ��� + ��� ���

0 C3 cosB3 j �C5 cosB5 0

0 �C3 sinB3 j �C5 sinB5 �1

37777777775
(2.92)

As discussed previously, the Newton-Raphson solution is achieved by an iterative re�ne-
ment of the initial solution estimate.

Before leaving the position solution, there is one other noteworthy point. Look again
at Figure 2.21. The upper loop is recognized as a four-bar linkage that is determined
completely when � is speci�ed. The second loop is a slider-crank mechanism for which
B5 and y are determined once B3 is known. (Because the slider-crank in this situation
only works through much less than a full crank revolution, this is sometimes called a
toggle linkage, and the whole assembly is termed a four-bar/toggle linkage mechanism.)
This suggests that it should be possible �rst to solve the four-bar linkage loop equations
without considering the rest of the mechanism; then, with that solution known, to solve
the slider-crank equations. Because this is indeed possible, this mechanism is said to be
weakly coupled. If this type of separation were not possible, the system would be strongly
coupled. Look at the Jacobian matrix just presented, and notice the null partition in
the upper right corner; the null partition indicates the weak coupling. Weak coupling is
somewhat dependent on the manner in which the equations are written. If a closed-form
solution is sought, then certainly advantage should be taken of weak coupling whenever
it exists. If a numerical solution by the Newton-Raphson method is to be employed, then
weak coupling is usually not signi�cant.
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2.8.1.2 Velocity Coe¢ cient Analysis

When the position equations are di¤erentiated with respect to �, the velocity coe¢ cient
loop equations are obtained. In matrix form, these equations are�

@f

@s

�
fKSg = �

�
@f

@�

�
(2.93)

Because the coe¢ cient matrix on the left is the Jacobian matrix that was presented
above, all that remains to be speci�ed is the vector on the right side:

�
@f

@�

�
= R

8>>>>>><>>>>>>:

� sin �

cos �

0

0

9>>>>>>=>>>>>>;
(2.94)

These equations may be solved readily for the secondary variable velocities or for the
velocity coe¢ cients. The preceding position and velocity coe¢ cient solutions are demon-
strated with the following numerical values.

2.8.1.3 Numerical Values

Consider a four-bar/toggle linkage with the following link lengths and crank pivot loca-
tion:

C2 = 355 mm R = 127 mm

C3 = 685 mm X1 = 345 mm

C5 = 1120 mm Y1 = 457 mm

For this system, the secondary kinematic variable values and the velocity coe¢ cients are
determined when the input crank position is � = 1:0 radian. The analysis described is
implemented in a computer program 4BarTogl, listed below. The program consists of
these major parts:

1. The usual title lines, Option Nolet and Option Base 1 statements, and the Dimen-
sion statement;

2. Seven lines of problem data, including � = 1:0: This code could readily be adapted
to other positions by simply changing this line and the Starting Estimates.
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3. Starting Estimates for each of the unknowns in order to begin the Newton-Raphson;

4. Control values for the maximum allowable residual (fmx) and the maximum number
of iterations allowed (itmx);

5. The iterative solution loop;

(a) Extraction of the variables by name for use in the function evaluations;

(b) Residual function evaluations and calculation of jf j2 ;
(c) Test to exit if the solution is fully converged;

(d) Evaluation of the Jacobian and Jacobian inverse;

(e) Evaluation of the adjustment and calculation of jdj2 ;
(f) Test for a stalled solution, with warning output if required;

(g) Test for failure to converge, with warning output if necessary;

(h) End of the loop, return to the beginning;

6. Extraction of the �nal converged results for output.

The program output for � = 1:0 follows:

Solution after 22 iterations"
fsq = 9.7570123e-11
A2 = .33478272
B3 = .1145972
B5 = 6.9992296e-2
YY = 1797.7648

The program listing that produced this output follows below:

! 4BarTogl.Tru
! Four-Bar/Toggle Linkage Kinematics
OPTION NOLET
OPTION BASE 1
DIM x(4),f(4),d(4),jac(4,4),jaci(4,4)
R=127 ! system data
C2=355
C3=685
C5=1120
X1=345
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Y1=457
th=1.0 ! crank angle, theta
! Starting Estimates
x(1)=0.1
x(2)=0.3
x(3)=x(2)
x(4)=C3+C5
fmx=1e-5 ! max allowable function value
itmx=30 ! max allowable number of iterations
FOR i=1 to itmx ! iterative solution loop

A2=x(1) ! extract variables for functions
B3=x(2)
B5=x(3)
YY=x(4)
f(1)=X1+R*cos(th)-C2*cos(A2)-C3*sin(B3)
f(2)=Y1+R*sin(th)+C2*sin(A2)-C3*cos(B3)
f(3)=C3*sin(B3)-C5*sin(B5)
f(4)=C3*cos(B3)+C5*cos(B5)-YY
fsq=f(1)^2+f(2)^2+f(3)^2+f(4)^2 ! f-square
IF fsq<fmx^2 then EXIT FOR ! test for fully converged solution
MAT jac=zer
jac(1,1)=C2*sin(A2)
jac(1,2)=-C3*cos(B3)
jac(2,1)=C3*cos(A2)
jac(2,2)=C3*sin(B3)
jac(3,2)=C3*cos(B3)
jac(3,3)=-C5*cos(B5)
jac(4,2)=-C3*sin(B3)
jac(4,3)=-C5*sin(B5)
jac(4,4)=-1
MAT jaci=inv(jac)
MAT d=jaci*f ! calculate adjustment
dsq=d(1)^2+d(2)^2+d(3)^2+d(4)^2 ! d-square
MAT x=x-d ! revise solution estimate
IF dsq<1e-14 then ! test for stalled solution

PRINT " i = ";i
PRINT " f-square = ";fsq
PRINT " d-square = ";dsq
PRINT " d-square too small, solution stalled"
STOP

END IF
IF i=itmx then ! test for failure to converge

PRINT " i = itmx"
PRINT " fsq = ";fsq
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PRINT " exceeds iteration limit, no solution"
STOP

END IF
NEXT i
A2=x(1) ! extract solutions for output
B3=x(2)
B5=x(3)
YY=x(4)
PRINT " Solution after ";i;" iterations"
PRINT " fsq = ";fsq
PRINT " A2 = ";A2
PRINT " B3 = ";B3
PRINT " B5 = ";B5
PRINT " YY = ";YY
END

As illustrated here, the existence of multiple independent loops increases the number of
equations required in each of the position, velocity, and acceleration solutions. Otherwise,
it is exactly like any other single degree of freedom system analysis.

2.9 A Computer Algebra Approach

For simple mechanisms, the methods of analysis demonstrated in the previous sections
are easily carried out. However, when there are many secondary variables, the number of
loop equations and constraint equations becomes large and the di¤erentiation required
can be laborious. The purpose for this section is to present an approach that may be of use
to those with access to a computer algebra program such as Maple

TM
, Mathematica

TM
,

or other similar program. These programs are often called computer algebra systems
(CAS). The point here is to exploit the symbolic di¤erentiation capability of such a
program to facilitate the kinematic study of single degree of freedom mechanisms. The
distinction between total and partial di¤erentiation is critical to what follows here.

Consider a system for which there are N loop equations and constraints, each of the
homogeneous form

fi = fi (s1; s2; s3; : : : ; q) = 0 i = 1; 2; : : : N (2.95)

where s1; s2; : : : are the secondary variables and q is the primary variable. These are the
equations that must be solved numerically by Newton-Raphson to obtain the secondary
positions. That solution requires the use of the Jacobian matrix, but it occurs naturally
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in the development of the velocity coe¢ cients below. The whole set of equations may be
arranged in a column vector as ffg = col (f1; f2; : : : fN) = f0g.

Now form the total derivative of this vector with respect to q thus:

d ffg
dq

=
@ ffg
@s1

ds1
dq
+
@ ffg
@s2

ds2
dq
+ � � �+ @ ffg

@sN

dsN
dq

+
@ ffg
@q

=
@ ffg
@s1

Ks1 +
@ ffg
@s2

Ks2 + � � �+
@ ffg
@sN

KsN +
@ ffg
@q

(2.96)

= [J ] fKg+ @ ffg
@q

(2.97)

where the last result follows from the de�nition of the Jacobian matrix. The computer
algebra program can be coded to develop the expression in equation (2.96) and thus
develop all of the components of equation (2.97). Recalling that d ffg =dq = f0g ; it is
evident that the velocity coe¢ cients can be determined directly by numerical solution of
equation (2.97) set to zero.

Now consider a second total derivative of ffg with respect to q. This will be of the form

d2 ffg
d2q

=
@2 ffg
@2s1

�
ds1
dq

�2
+
@ ffg
@s1

�
d2s1
d2q

�
+
@2 ffg
@2s2

�
ds2
dq

�2
+
@ ffg
@s2

�
d2s2
d2q

�
+ � � �+ @2 ffg

@2q

=
@2 ffg
@2s1

K2
s1 +

@ ffg
@s1

(Ls1)

+
@2 ffg
@2s2

K2
s2 +

@ ffg
@s2

(Ls2)

+ � � �+ @2 ffg
@2q

= [J ] fLg+ @2 ffg
@2s1

K2
s1 +

@2 ffg
@2s2

K2
s2 + � � �+

@2 ffg
@2q

(2.98)

There are two important points to remember in forming the second derivative expression:

� Since ffg = f0g, all its derivatives are zero as well;

� From equation (2.97), it is evident that the second derivative contains the term
[J ] fLg and various other terms involving the primary and secondary variables and
the several velocity coe¢ cients.
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From the second point, it is evident that the second derivative can be written as

d2 ffg
d2q

= [J ] fLg � fV2g (2.99)

where fV2g contains all of the other terms. The expression for fV2g is evaluated symbol-
ically (in the computer algebra system) as

fV2g = [J ] fLg �
d2 ffg
d2q

(2.100)

This only requires a bit of symbolic matrix arithmetic since both d2 ffg =d2q and [J ] are
previously determined within the computer algebra program. Then, the equation to be
solved numerically for the velocity coe¢ cient derivatives is

[J ] fLg = fV2g =
�
[J ] fLg � d2 ffg

d2q

�
(2.101)

where the right side is evaluated numerically after being formed symbolically.

In simple cases, it may be useful to carry out in closed form the full solution for the
velocity coe¢ cients and the velocity coe¢ cient derivatives. However, this tends to result
in very complicated expressions for each of the functions, expressions that are mean-
ingless for interpretation and di¢ cult to code correctly for the computer. More often,
the real utility of this approach is in expressing the forms for fV1g and fV2g to then be
programmed for numerical solution within the computer.

This approach is particularly useful for systems involving more than two loop equations,
such as the case of a multiloop mechanism or the imposition of additional constraints.
The detailed implementation of this approach depends upon (a) the particular problem
and (b) the computer algebra program available. While the exact details of the im-
plementation depend upon these matters, the following outline is recommended for the
implementation of this approach.

1. Write the governing equations (position loops and/or constraints, if any), as a
homogeneous vector function, ff (s1; s2; s3; : : : ; q)g = f0g ;

2. Di¤erentiate the result of the �rst step to form the complete di¤erential, fdfg : In
so doing, introduce the notation Ksi for the derivative of si with respect to q;

3. Di¤erentiate the result of the second step to form the second di¤erential, fd2fg.
In this operation, further introduce the notation Lsi for the derivative of Ksi with
respect to q;
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4. Extract the Jacobian matrix as the coe¢ cients of the various Ksi in fdfg ;

5. Form the right side vector for the velocity coe¢ cient calculation, fV1g;

6. Form the right side vector for the velocity coe¢ cient derivative calculation, equation
(2.100), fV2g;

7. Numerically solve the system of linear equations for the velocity coe¢ cients, equa-
tion (2.99);

8. Numerically solve the system of linear equations for the velocity coe¢ cient deriva-
tives, equation (2.101).

Considerable care in coding and checking is required to implement this approach, but it
is a powerful tool for use on more complicated mechanisms.

2.10 Conclusion

The basic approach to the kinematic analysis of single degree of freedom mechanisms
has been presented in this chapter. The process begins with the selection of a primary
coordinate to be associated with the degree of freedom. The mechanism position is
described by position equations that are the scalar components of the closed position
vector loops and are written in terms of the primary coordinate and such secondary
coordinates as may be required. The user needs to assign these variables as required in
order to write the position loops. These equations can be solved to provide values for
the secondary variables when a value is assigned to the primary variable.

The velocities and accelerations of the secondary variables may be determined from the
di¤erentiated position loop equations.

� The velocity of any secondary variable is directly proportional to the velocity of
the primary variable, and this makes possible use of a position dependent velocity
coe¢ cient to express the secondary velocity in terms of the primary velocity. The
velocity coe¢ cient is available directly by di¤erentiating the secondary variable
with respect to the primary variable.

� The acceleration of any secondary variable can be expressed as the sum of two
terms� the �rst, the product of the velocity coe¢ cient with the acceleration of the
primary variable, and the second, the product of the velocity coe¢ cient derivative
with the square of the primary velocity. The required velocity coe¢ cient derivative
is the derivative of the velocity coe¢ cient with respect to the primary variable.
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For any point on a moving body, base coordinates are readily expressed from the geom-
etry in terms of the primary variable, the secondary variables, and the body coordi-
nates for that point of interest. When these relations are di¤erentiated with respect to
time, the base coordinate velocity and acceleration are obtained. For any such point in
two-dimensional motion, there are two velocity coe¢ cients and two velocity coe¢ cient
derivatives� one associated with each direction.

Writing the position loop equations is a process unique to each mechanism. After that,
the solutions for the position loop equations, velocity coe¢ cient equations, and equations
for velocity coe¢ cient derivatives may or may not be possible in closed form, although
numerical solutions are generally available.

If the ideas summarized here have been mastered, there should be little di¢ culty in the
kinematic analysis of any single degree of freedom mechanism. These ideas play a major
role in the later static and dynamic analysis of such mechanisms, so kinematic analysis
is only the beginning of their application.
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Problems

2-1 The device shown was used in early, mechanical analog computation. The dimensions
A and B are known constants, and the input x is assigned.

(a) Express the output displacement, R,in terms of A; B; and x;

(b) Determine the velocity coe¢ cient KR = dR=dx;

(c) Determine the velocity coe¢ cient derivative, LR = dKR=dx;

(d) Given that A = 50 mm and B = 17 mm, evaluate R; KR, and LR for x = 35 mm;

(e) Using the results from (d), evaluate _R and �R for _x = �25 mm/s, �x = 12 mm/s2.

2-2 The mechanism show is called a quick return mechanism and it is used in the machine
tool called a shaper. The �ywheel is driven by a motor (not shown), causing the lever
to oscillate to the left and right. In the shaper application, a cutting tool is mounted on
the horizontal slider and makes a cut during the slow motion part of the stroke before
returning rapidly in preparation for the next cut. The dimensions C, D, and R are all
known constants.

(a) Determine the displacement, x, as a function of �, in closed form;

(b) Determine the velocity coe¢ cient, KX = dx=d� as a function of �, again in closed
form;

(c) Determine the velocity coe¢ cient derivative, Lx = dKx=d� as a function of �; also in
closed form;

(d) Given the dimensions below, evaluate x; _x; and �x for � = �=6 rad, _� = 22:5 rad/s,
and �� = 147 rad/s2.

C = 0:4 m D = 0:75 m R = 0:085 m
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2-3 The Geneva mechanism (also called a Geneva wheel) is a device to provide intermit-
tent angular motion based on a continuous input rotation. The derive pin on the input
disk (right side) engages a slot in the output wheel, causing it to rotate until the drive
pin eventually exits the slot. At the point of initial engagement, and again as the drive
pin exits the slot, the pin must move along a radius of the Geneva wheel in order to
avoid operating problems and noise. For the �ve slot Geneva shown, the input rotation
is described by � while the output motion is A; the dimensions R1; R2, and D are all
known and the drive pin is assumed to have zero diameter for this problem (the �nite
diameter drive pin is considered in the next problem).

(a) Determine in closed form the output rotation, A (�), as applicable while the pin is
engaged with a slot;

(b) Determine the maximum and minimum values of � for pin-slot engagement;

(c) Determine the velocity coe¢ cient, KA (�), and the velocity coe¢ cient derivative,
LA (�), for that same interval;

(d) Given the dimensional data below, determine A; _A; and �A for � = 0:15 rad, _� = 12:4
rad/s, and �� = �29:0 rad/s2.

R1 = 110 mm R2 = 152 mm D = 187 mm

2-4 To avoid impact as the drive pin engages the slot in the Geneva wheel, the pin
velocity must be along the centerline of the slot at the entrance, as pointed out in the
previous problem. View 2-4(a) shows a driving pin of (nearly) zero radius located at the
radius R1 on the driving disk; it is engaging with a Geneva wheel of N slots.

(a) Determine an expression for the appropriate value of R2 in terms of R1 and N ;
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(b) Determine an expression for the center-to-center distance D.

The value determine in part (a), based on a zero radius drive pin, cannot be the actual
case. Proper support at the entrance (and exit) condition requires the use of the slightly
larger radius R02 as shown in 2-4(b).

(c) If the drive pin radius is denoted as Rp, develop an expression for the appropriate
value of R02;

(d) If a drive pin diameter of 14:3 mm is to be used with a �ve-slot Geneva wheel with
the dimensions given in problem 2-3(d), evaluate R02.

2-5 The �gure shows a double acting gas compression cylinder. The crank is turned by
a prime mover (not shown) causing the cross head, piston rod, and piston to recipro-
cate. The piston rod, piston, and cylinder cavity are all right circular cylinders, and the
dimensions R; L1; L2; X1; X2; Dp; D, and Tp are all known data (L2 extends from the
center of the cross head pivot to the left side of the piston).

(a) Determine expressions for the chamber volumes V1 and V2 in terms of the known data
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and the crank angle � (be sure to allow for the volume of the piston rod and the piston
thickness);

(b) Develop expressions for the derivatives dV1=d� and dV2=d�.

2-6 For the double acting compression cylinder of problem 2-5, assume the data given
below.

(a) Make plots of V1 (�) and dV1=d� versus �;

(b) Make plots of V2 (�) and dV2=d� versus �.

R = 200 mm L1 = 560 mm L2 = 510 mm Tp = 50 mm

X1 = 890 mm X2 = 1245 mm Dp = 200 mm Dr = 57 mm

2-7 It is proposed to use a hydraulic cylinder to drive a crank connected to a load; the
system is shown in schematic form below. The outboard end of the hydraulic cylinder is
pivoted on a �xed support at an angle A above the horizontal. The dimensions A, d; L;
and R are assumed known.

(a) Develop expressions for s and � as functions of the crank angle � and the known data;

(b) Develop expressions for the derivatives ds=d� and d�=d� as functions of �.

2-8 The system shown in the accompanying �gure has been proposed as a perpetual
motion machine. All three legs are identical. Assume that gravity acts downward, and
that each a � a rectangle has mass Ma, with center of mass at the geometric center of
the rectangle. Each leg of length b has mass Mb; with center of mass at the center of the
arm. Each upright of length h has mass Mh; with center of mass at the center of the
arm. Each leg with length L has mass ML, with center of mass at the middle of the leg.
What is the path of the system center of mass as the assembly rotates?

2-9 The �gure depicts a type of aircraft landing gear used to fold the wheel into a well
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in the lower surface of the wing in order to reduce drag during �ight. In the mechanism
shown, the wheel strut is pivoted about an axis through point A that is perpendicular
to the page. As shown, the gear is partially deployed. Full deployment for use requires
that the strut be extended to a vertical position. The stowed position has the strut and
wheel in a horizontal position. Deployment and retraction are driven by the hydraulic
cylinder shown.

The system has one degree of freedom associated with the overall length of the hydraulic
actuation cylinder, q. The secondary variables are identi�ed on the drawing: �; �; �; and
 . The geometry of the bell crank is fully de�ned by the lengths of the three sides. For
problem parts (a), (b), and (c), treat the angle � as known.

(a) Write all of the position loop equations and the Jacobian matrix;

(b) Obtain the equations for the several velocity coe¢ cients in matrix form;

(c) Obtain the equations for the several velocity coe¢ cient derivatives, again in matrix
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form;

(d) Using the dimensional data given below and trigonometry, determine the angle �;

(e) Continuing with the dimensional data below and the value of � found in (d), determine

� The value of q for � = 0 (full retraction);

� The value of q for � = �=2 rad (or 90o) (full deployment);

(f) For q from qmin to qmax; plot the angles, velocity coe¢ cients, and velocity coe¢ cient
derivatives as functions of q for each of the secondary variables (make computer generated
plots with a minimum of 100 points on each curve).

Link Lengths (mm)

AB = 441:0 DE = 501:0

BC = 861:0 CE = 462:0

CD = 330:0

Fixed Pivot Locations (mm)

Point A : xA = 0:0 yA = 0:0

Point E : xE = 1107:0 yE = �222:0

Point F : xF = 2412:0 yF = 0:0

2-10 The �gure shows a pump jack, a common sight in a producing oil �eld. Power from
the drive motor (far right) is transferred through the gear box to turn the crank (1-2)
that carries massive cast steel counter weights. Motion of the crank is passed through
the coupler (2-3) to the rocking beam (3-4). On the end of the rocking beam, a �exible
band is wrapped around a circular head and connected to the sucker rod that drives the
pump mechanism far down the well bore.

The primary mechanism is a four bar linkage, with �xed pivots at 1 and 4. When referred
to the coordinate system shown, the �xed pivot locations are

x1 = 3369 mm y1 = 1816 mm

x4 = 1650 mm y4 = 4068 mm

The link lengths are
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R12 = 854 mm crank

c23 = 2200 mm coupler

c34 = 1648 mm pivot to pivot

along the beam

Assuming the crank speed is steady at 47 rpm, determine

(a) the length of the sucker rod stroke (minimum to maximum coupling elevations);

(b) maximum and minimum sucker rod velocity values;

(c) maximum absolute acceleration of the sucker rod;

A computer search for the extreme values is required; use 1 degree increments on � for
the search.

2-11 The mechanism shown is another type of retractable landing gear for aircraft. It
draws the wheel and shock absorbing strut up into the fuselage of the aircraft with a
motion entirely in the fore and aft vertical plane. The solid lines show the gear partially
deployed while the broken lines show both the fully deployed (vertical) and fully retracted
(horizontal) positions. The motion is driven by a hydraulic cylinder between points A
and B, where B moves in a guide slot. The necessary dimensional data is given in a table
below.

The system has one degree of freedom easily associated with the length of the hydraulic
cylinder assembly, A-B = q:With the wheel fully down, q = qo, while with the wheel fully
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up, q = qf : Note the x � y coordinate system shown. With respect to that coordinate
system, the strut is pivoted at the origin of coordinates, while one end of the hydraulic
cylinder is �xed in the aircraft structure at (xA; yA) ; coordinates tabulated below. The
following angle de�nitions are useful for the analysis:

� = 32o = slot inclination angle;

� = inclination angle for the hydraulic cylinder axis with respect to the horizontal;

 = inclination of the link BC with respect to the horizontal;

� = angle of the wheel strut with respect to the vertical.

It will likely be necessary to introduce an additional variable in order to formulate the
kinematic equations; call that variable s. When the landing gear is fully deployed (� =
0o), the point B is on the x�axis at a point designated as xB1. In this position, the link
BC is exactly aligned with the guide slot.

System Data

BC = 1404 mm

xA = �846 mm yA = 463 mm

(a) Determine the required numerical values for the necessary geometric parameters not
given, speci�cally CD; xB1; qo; qf . and the cylinder stroke stroke = qo � qf ;

(b) Write all of the position loop equations, identify the unknowns in a list, and write
the Jacobian matrix. Put the list of unknowns in alphabetical order, Latin letters �rst,
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followed by Greek letters;

(c) Obtain an expression that can be solved numerically for the velocity coe¢ cients (do
not solve; the method of Sect. 2.9 is recommended);

(d) Obtain an expression that can be solved numerically for the velocity coe¢ cient deriv-
atives (do not solve; the formulation of Sect. 2.9 is recommended);

(e) Develop and execute computer code to numerically solve for all positions, velocity
coe¢ cients, and velocity coe¢ cient derivatives over the full stroke of the mechanism.
Plot the results in normalized form.

2-12 The �gure shows an application of a four bar linkage as a rock crusher. The position
of the crusher plate is described by the angle �, while the rotation of the driving motor
is �. All dimensions shown are in millimeters.

(a) Write the position loop equations for the four bar linkage, the Jacobian, and the
matrix equations solvable for the velocity coe¢ cients, and velocity coe¢ cient derivatives
(do not solve);

(b) Develop an expression for the spring length, S as a function of both � and �; and
also the expression for the velocity coe¢ cient @S=@�:

2-13 The �gure shows a light duty air compressor of novel design. The spherical piston,
wrist pin, and connecting rod functions are all combined in a single molded plastic part;
the cylinder is also a molded plastic part. Notice that the crank is actually just an
eccentric circle. When the crank angle is � = 0, the piston is 1 mm from the top of the
cylinder. With the data below, express the cylinder volume, V (�) as a function of the
crank angle.
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R1 = 11 mm R2 = 22 mm R3 = 30 mm D = 82 mm

2-14 The mechanism shown is a disappearing platform, used to support a typewriter,
computer, sewing machine, or other equipment that is only required on the work surface
part of the time. In the fully raised position, the platform is level and the variable s is
negative. When s is increased, the platform tilts to the right and down, lowering the
unnecessary equipment so that a �at cover can be dropped in place. The system is shown
in solid lines in the partly lowered position. Assume that the system data C1; C2; C3;
Xo; and Yo is all given.

(a) Determine the system of equations to be solved for B1; B2; and B3 for any assigned
value of s (do not solve);

(b) Set-up the equations for the velocity coe¢ cients KB1; KB2; and KB3 (do not solve).

2-15 The garage door mechanism shown is a four bar linkage, with the door itself com-
prising one of the four bars (C-E-B). The �gure shows the door partially opened in solid
line, and also in broken line in the fully closed (down) position. All of the basic geometric
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data is speci�ed, including all �xed point locations and all dimensions (see problem 2-16
for notations).

(a) Considering the angle � as primary, analyze the mechanism for all secondary variables
(do not solve);

(b) Express all of the velocity coe¢ cients;

(c) Express the spring length, S;

(d) Express the derivative dS=d�.
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2-16 For the garage door mechanism of problem 2-15, the numeric data below apply.

(a) What is the minimum value of �?

(b) Will the lower edge of the door clear the lintel?

(c) If the maximum value of � is �max = 1:92 rad, plot the function S (�) over the full
range of � values;

(d) Plot the function dS=d� over the full range of � values.

C1 = 2134 mm C2 = 2079 mm C3 = 274 mm

C4 = 274 mm C5 = 213 mm C6 = 90 mm

xA = 1402 mm yA = 183 mm lower pivot location

xD = 1402 mm yD = 975 mm upper pivot location

xF = 2286 mm yF = 1066 mm spring anchor location

2-17 The wheel shown rolls without slipping while under the control of the crank and
connecting rod. The mechanism is originally assembled with the crank and connecting
rod aligned, and with the wheel center a distance So to the right of the crank pivot, as
shown in broken line. The dimensional values C1; C2; r; R; and So are all known. The
crank angle � is considered the primary variable.

(a) Set up the equations required to determine the secondary variables (do not solve);

(b) Set up the equations for the velocity coe¢ cients;

(c) Set up the equations for the velocity coe¢ cient derivatives.

2-18 The circular disk rolls without slipping up and over the semicircular support as the
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slider moves to the left. The mechanism is assembled as shown in the broken line with
A = 0 and s = 0. The dimensions C1; C2, R1; R2; and r are all known. The focus is on
the relation between A and s, with s considered as the primary variable. It will likely be
necessary to de�ne other constants and variables in order to solve the problem.

(a) Set up the equation(s) solvable for A as a function of s;

(b) Set up the equation(s) solvable for KA = dA=ds;

(c) Set up the equation(s) solvable for LA = d2A=d2s.

2-19 The wheel rolls without slipping in the circular guide (think of this as a ring gear
with a pinion rolling inside it) while the slotted lever is pivoted at the center of the guide
arc. A pin on the wheel engages the slotted lever. The system is initially assembled with
� = 0 as shown in the broken lines. Consider � as the primary variable.

(a) Set up the system of equations solvable for all secondary variables (do not solve);

(b) Set up the system of equations solvable for all secondary velocity coe¢ cients (do not
solve);

(c) Set up the system of equations solvable for all secondary velocity coe¢ cient derivatives
(do not solve).

2-20 The �gure shows the mechanism of a pneumatically powered press. It is designed to
take ordinary shop air (6 bar) and develop a very high force4. Be aware that the drawing
is not to scale, either with respect to lengths or angles; it simply shows what elements
connect to each other and what their relative positions are. The angles of the main link
are not given because the calculation seems to be rather sensitive to their exact values.
Thus it is preferable that the angles be determined internally to the computer code by
use of the law of cosines.

4Based on a design problem described by R.T. Hinkle, Design of Machines, Prentice-Hall, 1957, pp.
119-124.

Mechanics of Machines c 2019 Samuel Doughty



Chapter 2 Problems 85

(a) Formulate the equations for the determination of the main link angles E`; E2; E3; and
E4 but do not evaluate numerically;

(b) Formulate the full system of equations required to describe the kinematics of this
system using the piston displacement q as the primary variable;

(c) Formulate the equations solvable for all of the velocity coe¢ cients;

(d) Formulate the equations solvable for the velocity coe¢ cient derivatives;

Press System Data

B1 = 27:94 B2 = 137:84 B3 = 193:04 B4 = 334:34 mm

C1 = 25:4 C2 = 330:20 C3 = 469:90 C4 = 355:60 mm

C5 = 1016:00 C6 = 152:40 mm

L1 = 180:34 L2 = 230:87 L3 = 330:22 L4 = 571:66 mm

ac = 165:10 mm Main Link Diagonal (see Detail for corner notations)

diam = 208:79 mm Air Cylinder Piston Diameter

stroke = 300 mm Air Cylinder Piston Stroke Length

P = 6:0 bar Air Cylinder Pressure

2-21 This problem is the further computer implementation of the analysis of the system
considered in problem 2-20. All data given there is understood to apply here as well.

(a) In a computer code, use B1; B2; B3;B4; and ac to determine E1; E2; E3; and E4 by
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use of the law of cosines; be sure to store and use the full internal computer accuracy
without rounding;

(b) Compute solutions for the full range of piston displacements in order to build a table
of values at 25 mm increments from 0 to 300 mm (note: it will probably be useful to
generate solutions on 1 mm increments, but only send every 25th value to the output
list);

(c) Use the solution values generated in the previous step to develop a computer animation
of this mechanism during the forward stroke;

(d) Use the computer to generate a plot of tool position, S (q), over the full stroke;

(e) Make a computer generated plot of KS (q) over the full stroke.
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MDOF Mechanisms

3.1 Introduction

Linkages and other mechanisms with multiple degrees of freedom (MDOF) require more
than a single generalized coordinate, a number equal to the number of degrees of freedom.
The linkage con�guration is not fully speci�ed until all of the generalized coordinates
are speci�ed. For kinematic analysis, this is equivalent to saying that there are multiple
assigned primary variables. This has relatively little e¤ect on the position solution, but it
signi�cantly complicates the velocity and acceleration analyses. As a result, multidegree
of freedom kinematic analysis is often best handled on a case-by-case basis, rather than
seeking a general approach comparable to that developed in the previous chapter.

In Chapter 2, in the context of single degree of freedom mechanisms, most of the con-
cepts and tools required for this chapter were introduced. These include the idea of
primary and secondary variables, position loop equations, the Newton-Raphson numer-
ical solution technique, the Jacobian matrix, velocity and acceleration equations, and
body coordinates. With mostly minor modi�cations, all of these appear again in this
chapter in the context of multiple degree of freedom systems. Since there are few new
theoretical tools to be introduced, most of the presentation is done by means of examples.

3.2 Closed-Form Kinematic Analysis

As demonstrated in the previous chapter, the kinematic analysis for some mechanisms
can be completed in closed form, without resort to numerical methods. Although this is
applicable for only a limited class of mechanisms, it is useful to consider this case for the
insight it gives to the analysis process; sometimes the logic of the analysis is clouded by
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the numerical solutions.

In the following two degree of freedom example, the positions, velocities, and accelerations
for the secondary variables are determined in closed form. The modi�cations required
to accommodate multiple degrees of freedom soon become evident. The motion of a
particular point of interest is also developed.

Figure 3.1: Sliding Four-Bar Linkage

3.2.1 Sliding Four-bar Example

A sliding four-bar mechanism is shown in Figure 3.1 (the name is some-
thing of a misnomer since the fourth bar, the coupler, is not of �xed length).
It di¤ers from the conventional four-bar mechanism in that the pivot con-
necting the second crank to the coupler is mounted on a slider embedded in
the coupler, rather than being �rmly attached at a �xed point. This has the
e¤ect of making the coupler length variable. The system has two degrees of
freedom, here associated with the crank angles �1 and �2. The secondary
coordinates are the coupler angle, �, and the slider position, s, that is the
e¤ective length of the coupler. A generic coupler point P with body coordi-
nates (up; vp) is also shown. Determine the position, velocity, and acceleration
for the secondary variables and the point P .
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3.2.1.1 Position Analysis

The mechanism involves a single position vector loop from which there are two scalar
position loop equations:

c1 cos �1 + s cos�� c2 cos �2 � c3 = 0 (3.1)

c1 sin �1 + s sin�� c2 sin �2 = 0 (3.2)

These equations are to be solved for the two secondary variables � and s. Although
numerical methods are certainly applicable here, they are not required since there is a
closed form solution available, �rst for �:

tan� =
c2 sin �2 � c1 sin �1

c3 + c2 cos �2 � c1 cos �1
(3.3)

For the linkage proportions indicated in the �gure, ��=2 < � < �=2. Consequently, this
equation can be solved for � with the principal value of the arctangent function. That
value is then available for use in the solution for s:

s =
c3 + c2 cos �2 � c1 cos �1

cos�
(3.4)

This completes the closed form solution for the secondary positions.

3.2.1.2 Velocity Analysis

When the position loop equations are di¤erentiated with respect to time, the velocity
loop equations are the result:

�c1 _�1 sin �1 + _s cos�� s _� sin�+ c2 _�2 sin �2 = 0 (3.5)

c1 _�1 cos �1 + _s sin�+ s _� cos�� c2 _�2 cos �2 = 0 (3.6)

Since the values of �1; �2; _�1 and _�2 are all assigned values, and the values of � and s
have been determined, what remains is simply a pair of linear simultaneous equations in
_� and _s. When these equations are cast in matrix form, the coe¢ cient matrix on the left
side is recognized as the familiar Jacobian matrix.
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24 �s sin� cos�

s cos� sin�

358<: _a

_s

9=; =

24 c1 sin �1 �c2 sin �2
�c1 cos �1 c2 cos �2

358<: _�1

_�2

9=; (3.7)

When these equations are solved for the velocities, the result is

8<: _a

_s

9=; =

24 � (c1=s) cos (�� �1) (c2=s) cos (�� �2)

�c1 sin (�� �1) c2 sin (�� �2)

358<: _�1

_�2

9=; (3.8)

This shows that the two secondary velocities, _� and _s, can be written as a linear combi-
nation of the two primary velocities, _�1 and _�2. On the one hand, this is exactly the result
that would be expected, but notice that the secondary velocities are proportional to a
combination of primary velocities, rather than being proportional to a single primary
velocity. The velocity coe¢ cients are no longer a simple column vector as in Chapter 2,
but now appear as a (2� 2) matrix.

In general, for the multidegree of freedom situation, the velocity coe¢ cient matrix is a
rectangular matrix, with the number of columns equal to the number of primary variables
and the number of rows equal to the number of secondary variables. It is simply a
coincidence that in this example problem those two numbers are equal, resulting in a
square velocity coe¢ cient matrix.

3.2.1.3 Acceleration Analysis

The accelerations are obtained in the usual manner by di¤erentiation of the velocity
equations, starting with the velocity coe¢ cient form. The alternative is to di¤erenti-
ate the velocity loop equations, requiring that the system be solved for the secondary
accelerations. Following the route indicated, the process is

8<: ��

�s

9=; = [K]

8<: ��1��2
9=;+ _�1 @

@�1
([K])

8<: _�1

_�2

9=;+ _�2 @

@�2
([K])

8<: _�1

_�2

9=; (3.9)

= [K]

8<: ��1��2
9=;+ _�1 [L1]

8<: _�1

_�2

9=;+ _�2 [L2]
8<: _�1

_�2

9=; (3.10)

where the [Lj] are velocity coe¢ cient partial derivatives. In computing each of these par-
tial derivatives, one of the primary variables is varied, along with the secondary variables
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as they depend upon that particular primary variable.

[K] =

24 � (c1=s) cos (�� �1) (c2=s) cos (�� �2)

�c1 sin (�� �1) c2 sin (�� �2)

35 (3.11)

Thus consider the calculation of the (1; 1) element for the [L]1 matrix, the partial deriv-
ative with respect to �1:

L1 (1; 1) =
@

@�1
(K11) +

@

@�
(K11)

@�

@�1
+

@

@s
(K11)

@s

@�1

=
@

@�1
(K11) +K11

@

@�
(K11) +K21

@

@s
(K11)

= (c1=s) (K�1 � 1) sin (�� �1) +
�
c1=s

2
�
Ks1 cos (�� �1) (3.12)

The others are done in a similar manner to give the results

[L1] =
@ [K]

@�1
=

26666664
(c1=s) (K11 � 1) sin (�� �1)

+ (c1=s
2)K21 cos (�� �1)

� (c2=s)K11 sin (�� �2)

� (c2=s2)K21 cos (�� �2)

c1 (1�K11) (�� �1) c2K11 cos (�� �2)

37777775
(3.13)

[L2] =
@ [K]

@�2
=

26666664
(c1=s)K12 sin (�� �1)

+ (c1=s
2)K22 cos (�� �1)

(c2=s) (1�K12) sin (�� �2)

� (c2=s2)K22 cos (�� �2)

�c1K12 cos (�� �1) �c2 (1�K12) cos (�� �2)

37777775
(3.14)

3.2.1.4 Position, Velocity, and Acceleration for Point P

The base coordinates of P are readily expressed after the secondary variables have been
determined:
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xp = c1 cos �1 + up cos�� vp sin� (3.15)

yp = c1 sin �1 + up sin�+ vp cos� (3.16)

With one time di¤erentiation, the velocity components are

8<: _xp

_yp

9=; =

24 �c1 sin �1 0
c1 cos �1 0

358<: _�1

_�2

9=;+
24 �up sin�� vp cos� 0

up cos�� vp sin� 0

358<: _�

_s

9=;
=

24 �c1 sin �1 �K11 (up sin�+ vp cos�) �K12 (up sin�+ vp cos�)

c1 cos �1 +K11 (up cos�� vp sin�) K12 (up cos�� vp sin�)

358<: _�1

_�2

9=;
(3.17)

The coe¢ cient matrix on the right is the velocity coe¢ cient matrix for point P , denoted
as [Kp]. Note that again, a 2� 2 matrix is obtained, rather than just a column vector.

With �� and �s already determined, perhaps the quickest way to obtain �xp and �yp is to
simply di¤erentiate the �rst form given above for the velocity components, leaving �� and
�s in the �nal result. The results of those di¤erentiations are

�xp = �c1��1 sin �1 � c1��
2

1 cos �1

��� (sin�+ vp cos�)� _�2 (up cos�� vp sin�) (3.18)

�yp = c1��1 cos �1 � c1 _�
2

1 sin �1

+�� (up cos�� vp sin�)� _�2 (up sin�+ vp cos�) (3.19)

3.2.1.5 Numerical Values

The particular system for which these numerical values are calculated is de�ned by the
following parameters:

c1 = +0:150 m up = +0:620 m

c2 = +0:220 m vp = +0:350 m

c3 = +0:350 m

The calculations are made for an instant when the primary variable motions are these:
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�1 = +0:85000 rad �2 = +0:25000 rad

_�1 = �2:6000 rad/s _�2 = +3:50000 rad/s

��1 = +0:42000 rad/s2 ��2 = +0:68000 rad/s2

Substituting these results into the previous analysis gives

� = �0:12487 rad s = +0:46781 m

_� = +1:99960 rad/s _s = �0:60471 m/s

�� = +5:07616 rad/s2 �s = �1:64646 m/s2

The velocity coe¢ cient and velocity coe¢ cient partial derivatives may be of interest:

[K] =

24 �0:17997 +0:43762
+0:12414 �0:08055

35

[L1] =

24 +0:36090 �0:43762
+0:09934 �0:03684

35

[L2] =

24 �0:14712 �0:02148
�0:03684 �0:11513

35
For the point P speci�ed above, the global coordinates, velocity, and accelerations are

xp = +0:75779 m yp = +0:38275 m

_xp = +0:09817 m/s _yp = +1:05987 m/s

�xp = �4:72141 m/s2 �yp = +1:54397 m/s2

The velocity coe¢ cients for this point are

[Kp] =

24 �0:06409 �0:11818
�0:01956 +0:28829

35 m
This completes the numerical example for the sliding four bar linkage.
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3.3 Numerical Kinematic Analysis

Multidegree of freedom mechanisms that lend themselves to complete closed-form so-
lutions, such as in the preceding section, are relatively rare. Mechanisms that require
numerical solutions for the kinematic equations are far more common.

3.3.1 Position and Velocity Analysis

The position solution proceeds exactly as before, beginning with the development of the
position loop equations. The solution is obtained with the Newton-Raphson method;
this is exactly as was done for single degree of freedom systems. The Newton-Raphson
process requires the Jacobian matrix, and this may be obtained directly or as a part
of the velocity analysis. For the latter, the position loop equations are di¤erentiated
with respect to time to obtain the velocity equations, a system of linear simultaneous
equations. In preparation for determination of the unknown secondary velocities, the
velocity loop equations can be re-arranged to the matrix form

[J ]|{z}
n2�n2

n
_S
o

|{z}
n2�1

= [B]|{z}
n2�n1

f _qg|{z}
n1�1

(3.20)

where

[J ] is the (n2 � n2) Jacobian matrix,

[B] is a (n2 � n1) rectangular coe¢ cient matrix,n
_S
o
is the (n2 � 1) column vector of unknown secondary velocities,

f _qg is the (n1 � 1) column vector of assigned primary velocities.

There are several items to note at this point:

� For n1 degrees of freedom, there are n1 primary coordinates (provided that the
system is holonomic);

� The number of secondary variables may well be di¤erent from the number of pri-
mary variables, so it is denoted as n2;

� The secondary variables are collected into the single vector fSg simply to represent
all of them together;
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� The primary velocities are designated as f _qg : This is because the classical notation
for the primary variables (often called generalized variables) is qi.

The velocity coe¢ cient matrix is de�ned in the usual way as

n
_S
o
= [K] f _qg (3.21)

so it is evident that

[K] = [J ]�1 [B] (3.22)

Depending upon the software available for the evaluation of [K], in many cases it is more
advantageous to solve the system of linear equations [J ] [K] = [B], but this depends on
the tools available for the calculation.

3.3.2 Acceleration Analysis

The analysis of secondary accelerations proceeds exactly as was demonstrated in the
closed-form solution, beginning by di¤erentiating equation (3:21) with respect to time to
obtain

n
�S
o
= _q1

@ [K]

@q1
f _qg+ _q2

@ [K]

@q2
f _qg+ � � �+ [K] f�qg

= _q1 [L1] f _qg+ _q2 [L2] f _qg+ � � �+ [K] f�qg (3.23)

where the notation [Li] represents @ [K] =@qi. As introduced in the earlier section, the [Li]
are velocity coe¢ cient partial derivative matrices, analogous to the velocity coe¢ cient
derivative vectors found for single degree of freedom systems. The next question is how
to obtain these matrices by numerical means.

As mentioned above, the velocity coe¢ cient matrix is de�ned by the relation

[J ] [K] = [B] (3.24)

where the elements of [J ] and [B] are known explicitly. This expression can be di¤eren-
tiated as a product to give
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@ [J ]

@qi
[K] + [J ]

@ [K]

@qi
=
@ [B]

@qi
(3.25)

The required velocity coe¢ cient partial derivative matrix is obtained as the solution of
a system of simultaneous equations,

[Li] =
@ [K]

@qi
= [J ]�1

�
@ [B]

@qi
� @ [J ]

@qi
[K]

�
(3.26)

Following this numerical evaluation, the secondary positions, velocities, and accelerations
are readily determined by numerical means.

3.3.3 Numerical Example

Consider the four-bar linkage with one crank on a translating pivot as shown in Figure
3.2. For this mechanism, the system parameters are:

c1 = 2:24 m x4 = 4:00 m

c2 = 2:26 m y4 = 0:50 m

c3 = 1:77 m

At the moment of interest, the system con�guration is described by

s = +1:040 m � = 1:107 rad

_s = �0:520 m/s _� = �0:270 rad/s

�s = +0:390 m/s2 �� = 1:350 rad/s2

The problem is to determine �; _�; ��; �; _�, and �� by the numerical process described in
the preceding section.

The position loop equations are these:

f1 = s+ c1 cos � + c2 cos�� c3 cos � � x4 = 0 (3.27)

f2 = c1 sin � + c2 sin�� c3 sin � � y4 = 0 (3.28)

The standard Newton-Raphson technique provides a solution for the given con�guration,
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Figure 3.2: Kinematic Skeleton for Four-Bar Linkage with Translating Crank Pivot

� = 0:10768 rad and � = 1:40680 rad. There is nothing at all novel about this part of
the problem.

The Jacobian matrix is required, both for the Newton-Raphson and for the velocity
analysis. It is evaluated as

[J ] =

24 �c2 sin� c3 sin �

c2 cos� �c3 cos �

35
=

24 �0:24288 1:74625

2:24691 �0:28897

35 (3.29)

The matrix [B] for the right side of the velocity equation is also required; it is

[B] =

24 �1 c1 sin �

0 �c1 cos �

35
=

24 �1:0 2:00337

0:0 �1:00206

35 (3.30)

Together, these produce the velocity coe¢ cient matrix, [K],
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[K] = [J ]�1 [B]

=

24 �0:07499 �0:30386
�0:58308 +1:10497

35 (3.31)

Applying this result for the velocity coe¢ cients give the secondary velocities,

_� = 0:12104 rad/s (3.32)
_� = 0:00486 rad/s (3.33)

The accelerations are calculated by equation (3.26), for which there are several parts:

@ [B]

@s
=

24 0 0
0 0

35 (3.34)

@ [B]

@�
=

24 0 c1 cos �
0 c1 sin �

35 (3.35)

@ [J ]

@s
=

24 �K11c2 cos� K21c3 cos �

�K11c2 sin� K21c3 sin �

35 (3.36)

@ [J ]

@�
=

24 �K12c2 cos� K22c3 cos �

�K12c2 sin� K22c3 sin �

35 (3.37)

When all of the numerical values are entered and the arithmetic performed, the velocity
coe¢ cient partial derivatives are

[L1] =

24 �0:27485 +0:53016
�0:08725 +0:20968

35 (3.38)

[L2] =

24 +0:53016 +0:01606
+0:20968 +0:49283

35 (3.39)
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Finally, the secondary acceleration are obtained from equation (3.26), with the results

�� = �0:36374 rad/s2 (3.40)
�� = 1:33552 rad/s2 (3.41)

This completes the evaluation of the secondary variables, their velocities, and their ac-
celerations. It should be clear that the process is complicated, even for this relatively
simple system. A highly systematic approach is the key to accurate results.

3.4 Other Systems

It is apparent that velocity and acceleration in multidegree of freedom system are more
complicated than single degree of freedom systems, and further that the degree of com-
plexity grows rapidly with the number of degrees of freedom. This is particularly true
when there are more position loops involved.

In the �rst edition of this book, there is an example of motion analysis for the boom,
digger stick, and bucket of a crawler excavator that illustrates the above statement well.
For that system, there are three hydraulic cylinders involved, which indicates that there
are three degrees of freedom. The linkage is such that there are four loops, so in a two
dimensional analysis, there are eight equations in eight unknown secondary variables.
Despite the greater system complexity, the position solutions are rather straight forward;
the velocity and acceleration solutions are awkward at best. For any who are interested,
the details can be found at [1]. At the other extreme, there are a number of fairly
simple multidegree of freedom linkages that are fairly easy to analyze. Some of these �nd
application in computing mechanisms [2].

An interesting exception occurs in the torsional vibration of the multicylinder internal
combustion engine. The usual representation of this system is to assign one degree of
freedom to each crank angle or other rotating element, so the number of degrees of
freedom is equal to the number of cylinder plus any other rotating components. Such
a system may involve a rather large number of degrees of freedom. But, with regard
speci�cally to the slider-crank mechanisms of the engine, it is actually a collection of
single degree of freedom mechanism that are elastically connected through the rotating
shaft. In this situation, it is common to treat all of the slider-crank mechanisms as
independent, single degree of freedom mechanism. This is all explored in some detail in
Chapter 12.
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3.5 Robotics Problem

In the typical kinematics problems considered to this point, the motion of the primary
variables is speci�ed and the motion of some particular point, usually denoted as P , is
determined. This is sometimes described as the forward kinematics problem. In contrast,
consider that the motion of point P is speci�ed, and the question is to determine the
primary motions required to cause that motion at P . This latter is called an inverse
kinematics problem. In the terminology of robotics, the point P is selected as the location
of the end e¤ector, that is the tool that performs some useful work.

For example, in a robotic welder assembling an automobile, the electrode tip is the end
e¤ector, and the requirement is that electrode tip follow a speci�c path in executing a
weld. The computer driving the robot does not control the electrode tip directly, but
rather commands the necessary joint movements in the robot to create the required
electrode motion. Usually there are servo motors, hydraulic or pneumatic cylinders,
or other similar actuators under the direct control of the computer, and by the proper
motion of these actuators, the required motion of the end e¤ector is generated.

As an example of an inverse kinematics problem, consider the 2D robotic arm shown in
Figure 3.3 tracing the stylized letter A in �gure shown. A tool at the outer end of the
arm is perhaps cutting the A into a panel, or maybe it is simply spraying paint to show
the letter. In any event, the tool location is required to follow the centerline of the A.
It is understood that the coordinates for the de�ning corners of the A are all known:
(x1; y1), (x2; y2), (x3; y3), (x4; y4) and (x5; y5); this is simply the de�nition of the product.
The values used for this example are:

x1 = 10 y1 = 2

x2 = 20 y2 = 25

x3 = 18 y3 = 2

x4 = 14 y2 = 11:2

x5 = 21 y5 = 11:2

The parameters that describe the robot itself are the pitch radius (Rp) for the drive
gear and the centerline o¤set (C). For this example, the values used are Rp = 1:8, and
C = 2:6. The units for the robot dimensions and for the (xi; yi) pairs may be considered
to be either in inches or in centimeters; the choice has no e¤ect on the analysis, provided
the same units are used consistently throughout.

For the system shown, the primary variables, those directly driven, are the angle � and
�. The arm is held in a housing that allows it to slide, thus varying the distance D. The
change in D is driven directly by the pinion rotation �, causing the rack to slide through
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Figure 3.3: 2D Robotic Arm for Inverse Kinematics Problem

the guide groove in the housing. Angular motion of the arm is accomplished by rotating
the housing through the angle described by �. It is all conceptually pretty simple, but
there is a complication. If � is held �xed while � is varied, this also varies D; the length
D depends upon both � and �.

The reader may be concerned about � and � are driven. It is necessary to assume a
pair of coaxial shafts, located behind the plane of the paper, and each shaft driving one
variable. The inner shaft is coupled directly to the pinion, so it drives �. The outer shaft
is coupled to the underside of the housing, and thus drives �. The necessary bearings,
gearing, etc. are all understood to be exist behind the plane of the page.

3.5.1 Starting Point

In Figure 3.3, the zero position for � is clearly identi�ed as the x�axis, but there is some
ambiguity about where � is zero. The constraint relation between the rack and the pinion
is

D = Rp (�� �) +Do (3.42)
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where Do is a constant. It is convenient to take � = � so that D = Do when the tool is
at position 1 of the work piece. If the coordinates of position 1 are (x1; y1) then

f1 = C sin � +Do cos � � x1 = 0 (3.43)

f2 = �C cos � +Do sin � � y1 = 0 (3.44)

where x1; y1 and C are all known, and � = � and Do are the unknowns to be determined
by the Newton-Raphson method. If the unknowns here are considered as a vector X =
col (Do; �), and the functions to be solved are a vector ffg, the Jacobian matrix for this
system is

[J ] =

24 cos � C cos � �Do sin �

sin � C sin � +Do cos �

35 (3.45)

With the parameters given for the robot and the coordinates assigned for point #1, the
numerical solutions are Do = 9:8610344 and �o = �o = 0:45519256 rad for the starting
position.

3.5.2 Tracing the Letter

The next matter to consider is how to trace out the letter, in this case, the stylized A,
now that the starting point, (x1; y1) and starting values (Do; �o = �o) are known.

Consider �rst the leg from point 1 to point 2; having length L12. To locate N12 evenly
spaced points along this leg, including the end points, denote the distance from the �rst
point by si, where

si =
(i� 1)
N12 � 1

L12 (3.46)

where i = 1; 2, . . . ; N12. The rectangular coordinates for a point si away from the �rst
point are (xi; yi):

xi = x1 +
si
L12

(x2 � x1) (3.47)

yi = y1 +
si
L12

(y2 � y1) (3.48)
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The similar equations are also used for all later legs of the A, with modi�cations as
required, to describe points on the other lines. For each point, the position loop equations
are

f1 = C sin �i +Di cos �i � xi = 0 (3.49)

f2 = �C cos �i +Di sin �i � yi = 0 (3.50)

which are solved for the values (Di; �i) as before. As before, �i is then determined from
the constraint equation,

�i = �i + (Di �Do) =Rp (3.51)

This completes the process for the �rst leg of the A; the entire process must be repeated
for each of the four legs in order to obtain the complete letter.

Figure 3.4: Input Angles Required to Trace the Letter A

Figure 3.4 shows plots of �i and �i against the index, i. The portions related to each leg
of the A are clearly marked o¤ by vertical lines. All together, there are 111 points used
to describe the letter. It is evident that most of the input motion happens at the gear
that drives the arm in and out; the input gear rotation begins at �o = 0:45519 radians,
and goes as high as �max = 13:22671 radians. The rotation of the housing, which rotates
the arm as well, is a much smaller range of motion, 0:25472 � � � 0:97736 radians.
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It is evident that the inverse kinematics problem is fundamentally no di¤erent from the
forward problem; it is simply a matter of di¤erent variables assigned and those to be
determined.

3.6 Conclusion

It is evident that, with regard to positions only, there is little di¤erence between single
and multiple degree of freedom mechanism kinematics. In both cases, the position loop
equations are solvable by the Newton-Raphson method. When velocities are considered,
there is a signi�cant increase in complexity for multiple degree of freedom systems. Fi-
nally, that increase is greatly compounded when accelerations are required. All of this
is such that general solution formulations are not very practical, although many speci�c
problems are workable on a case-by-case basis.

The matter of robot kinematics and the inverse problem is only considered slightly here,
the details going well beyond the scope of the present book. It should be noted that for
the particular example considered here, there is a unique solution. This is not always
the case robot kinematics, particularly with more degrees of freedom. For those who are
interested, there is a growing body of literature on the subject.
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Problems

3-1 The �gure shows a tape wound on a reel; the tape remains taut at all times. The free
end is initially at the point (R;R) so that the initially unsupported length is Bo = R; in
this state, the angle � = 0: The free end of the tape is then moved to (x; y), increasing
the unsupported length to B.

(a) Set up equations solvable for B and � for assigned values of x and y; do not solve;

(b) Set up the equations solvable for _B and _� in terms of x; y; _x; and _y.

3-2 The mechanism shown may be considered as a "�oating slider-crank" because the
crank pivot is not stationary. The dimensions R, L, and C are known.

(a) Set up the position loop equations and solve in closed form for the secondary variables
x and � in terms of the primary variables s and �; solve these in closed form;

(b) Obtain a closed form solution for the velocity coe¢ cient matrix;

(c) Using the dimensions given below, evaluate x and � for s = 0:095 m and � = 0:35
rad;

(d) Using the solution from (c) and the dimensions below, evaluate _x and _� for _s = 2:45
m/s and _� = 1:35 rad/s.

R = 145 mm L = 278 mm C = 0:008 mm
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3-3 The �gure shows a fork lift carrying a crate. There are three degrees of freedom as-
sociated with (1) the forward motion of the vehicle, (2) the hydraulic cylinder controlling
the angle of the lift, and (3) the elevation of the forks. The dimensions D1; D2; D3; uc;
and vc are all known.

(a) Set up equations solvable for the secondary variables (do not solve);

(b) Set up equations solvable for the velocity coe¢ cients (do not solve);

(c) Determine global coordinates for the center of mass of the crate;

(d) Determine the (2� 3) velocity coe¢ cient matrix for the center of mass.

3-4 The �gure shows what could be called a "�oating four bar" linkage, �oating in the
sense that both of the crank pivots are moveable (and clearly there is no fourth bar).
The dimensions C1; C2; C3, C4; and C5 are all known values.

(a) Write the position loop equations, taking x; y; and � as primary variables (do not
solve);

(b) Set up the matrix equations solvable for the (2� 3) velocity coe¢ cient matrix (do
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not solve).

3-5 The �gure shows a solid roller inside a hollow cylinder. At each interface there is
rolling without slipping. The radii, ri, ro, and rr are all known values. Take x and � as
primary variables.

(a) Write the position equations, including any constraints (do not solve);

(b) Write equations solvable for the secondary variable velocity coe¢ cients (do not solve).

3-6 The �gure shows a system of rollers, arranged as a planetary friction drive (this could
equally well be a planetary gear train). On the left, the system is shown in an edge view
with the planet carrier rotated into the picture plane. On the right the whole assembly
is shown in an axial view, the planet carrier is rotated with respect to the vertical. The
input rotations are �1 and �2, while the output is �o, all rotations about axes �xed in
space. The ring rotation, �r, is about the same axis as the sun rotation, �2. Note that all
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rotations are taken positive in the same sense. The points of �ction contact are identi�ed
as: C1� drive gear 1 bearing against the ring; C2� planet gear bearing against the ring;
C3� sun gear bearing against the planet gear. These are the only places where friction
contact occurs, although C2 and C3 each occur twice. All contacts roll without slip. The
sun, the planets, and the #1 drive roller all have radius rp. The inner radius of the ring
gear is therefore rr = 3rp.

(a) Determine an expression for the output rotation, �o, in terms of the input rotations
�1 and �2 and the various radii;

(b) If the sun gear is �xed, determine the train ratio �o=�1;

(c) If the input �1 is held �xed, determine the train ratio �o=�2:
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Chapter 4

Cams

4.1 Introduction

A cam is a solid body shaped such that its motion imparts a prescribed motion to a
second body called the follower that is maintained in contact with the cam. The shape
of the cam and the physical relation between the cam and the follower de�nes a particular
functional relation between the cam position and the follower position over a range of
cam motions. Cams provide one of the simplest ways to generate complex motions with
high repeatability, reliability, and with reasonable costs. For these reasons, cams continue
to be used in many types of modern machinery.

There are many types of cam and follower combinations, some of which are illustrated
in Figures 4.1 and 4.2, but this is by no means an exhaustive compilation. All of the
cams in Figure 4.1 shows what are called disk cams or plate cams, a reference to their
generally plate-like form. Disk cams are commonly found in internal combustion engines,
timer mechanisms, machine tools, and a host of other applications. In Figure 4.2, two
other cam and follower types are shown, including a wedge cam and a barrel or cylinder
cam. The wedge type is used in some vending machines and in such heavy industry
applications as automated forming of nuts for use with bolts. The barrel cam is often
used in automated assembly processes. Note the fact that the barrel cam is essentially a
wedge cam wrapped around a cylinder.

The discussion of this chapter is limited to disk cams only; similar ideas apply for other
cam-follower types. Even within the limitation of disk cams only, there is still considerable
possible variation. From Figure 4.1, it is evident that the �at follower types shown in
(a) and (b) involve sliding contact with the cam. While this is satisfactory for very low
speeds and light loads, modern design practice strongly favors the use of roller followers
such as those shown in (c) and (d). Roller followers produce quieter operation, reduced
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Figure 4.1: Disk or Plate Cams With Various Follower Types

friction and wear, and overall better performance than that available with sliding contact
followers. Roller followers do, however, cost more. Flat-faced followers have the virtue
of simplicity, ruggedness, and low cost. It should be noted in passing that curved-faced
solid followers are used at times to approximate the shape of a roller follower in places
where the environment is not suitable for a roller follower, but they still involve sliding
contact.

The type of follower to be used is determined largely by the type of output motion
required. In Figure 4.1 (c), a rotational input motion produces a translating output
motion. In Figure 4.1 (d), a similar rotational input results in a rotational output motion.
The choice between the several types shown in Figure 4.1 is dictated entirely by the type
of output motion needed, performance demands, and costs.

In almost every application, the motion of the follower in a cam driven system is peri-
odic; it repeats over and over again. This is obviously true when the input motion is a
continuing rotation, but it is also true when the input motion is a reciprocating motion,
such as that indicated for the wedge cam in Figure 4.2 (a).

For a cam and follower system with periodic motion, the total cycle of operation is
typically similar to that shown in Figure 4.3. The system begins with the follower in a
reference position, designated as zero displacement for the follower. As the input motion
advances, the follower is forced to displace up to some maximum value; this initial action
is called a rise. The full amount of the rise is usually called the lift, denoted as h. If the
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Figure 4.2: Other Cam and Follower System Types

follower displacement is denoted as s (�), it is common practice to write this in terms
of the product of the lift with a nondimensional displacement function, f (�), so that
s (�) = h � f (�). Note that 0 � f (�) � 1. If the follower is held in a �xed position
over some interval, this is called a dwell, and a dwell at maximum displacement is called
a high dwell. With the input continuing to advance, the follower moves back down to
the reference position; this motion is called a return. Following the return, the follower
may dwell at the reference position through an interval called a low dwell. Each of these
motions is called an event, and the amount of input motion associated with the interval
is the event length, usually denoted as �.

To understand the signi�cance of each phase, consider an IC engine valve train driven
by a cam geared from the crankshaft. From a thermodynamic perspective, low dwell
is extremely important; this it the interval when the valves are closed, combustion is
occurring, and power is generated. Further, at high dwell the valves are open, and either
a fresh charge is introduced or combustion products are expelled. The thermodynamicist
would like the two dwells to be as long as possible, and the rise and return to occur
instantaneously. From a dynamics perspective, the dwells are relatively uninteresting
events; there is no motion in the system at all during a dwell. It is the rise and return
that are signi�cant in terms of dynamics, and particularly the facts that (1) rise and
return cannot be instantaneous and (2) the associated forces involved must be limited.
Thus the question as to which intervals are most signi�cant depends entirely on the
perspective of the questioner. Note also that, in particular applications, either or both
of the dwells may be reduced to zero length. If both are zero, then the follower is
continuously in motion as the input moves. Since the present discussion is primarily in
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Figure 4.3: Typical Cam Displacement Diagram

regard to the system kinematics and dynamics, the discussion focus is on the rise and
return phases and the associated end point transitions from one phase to the next.

It was mentioned at the very beginning that the follower is maintained in contact with
the cam. This is essential if the cam is to control the position of the follower, but how is
this continuous contact accomplished? What is there to prevent them from separating?
In all the disk cam variations shown in Figure 4.1, there is nothing indicated to keep them
together. There are two approaches to this problem. Force closure involves applying an
external force to maintain the contact. This might be nothing more than a gravitational
force, although much more often it involves a pre-loaded spring. It may reasonably be
assumed that there is a spring applied to maintain closure in all the variations shown in
Figure 4.1. Form closure means that there is a kinematic constraint that maintains the
closure. This is illustrated in Figure 4.2 (b) where the follower is con�ned between the
two walls of a groove on the cam cylinder. In actual operation, the barrel cam-follower
system shown there must allow a small clearance between the follower and the groove
walls; the roller cannot simultaneously roll on both sides of the groove. Thus, at least in
this example, form closure is imperfect because a clearance is required. Di¢ culty of this
sort is not uncommon in form closed cam-follower systems. Form closure is also used
in disk-cam systems as well. The interested reader may wish to research further on (1)
constant breadth cams and (2) desmodromic valve systems.

Figure 4.3 presents a displacement diagram, but what does it describe? The displacement
diagram shows the functional relation between the cam input motion and the follower
output motion. For any cam and follower system, the follower response motion is de�ned
as the motion of a speci�c point in the follower system called the trace point. Here there
is a major shift in view point for the cam discussion as compared with that in the two
previous chapters. In Chapters 2 and 3, the focus is on the kinematic analysis of a given
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system. In the present chapter regarding cams, the focus shifts from dealing with a given
system to that of (1) de�ning a system that will satisfy certain operating criteria, and
(2) analyzing the characteristics of a proposed solution. This is the shift from analysis
to an engineering design focus.

In any situation for which a cam-follower system is proposed as a solution, there is some
motion that must be accomplished. It usually involves moving some part from an initial
position to another position, and in most cases, back to the initial position. In most cases,
the extreme positions are speci�ed, the time intervals available for each motion are stated,
but the exact details of the motion are frequently not speci�ed. The cam designer must
choose a motion that satis�es all of the given speci�cations, that is physically realizable
at reasonable costs, and that will function well throughout the expected life of the overall
system. Referring back to Figure 4.3, this means that the upper and lower displacement
limits are given and the event lengths are speci�ed, but exact shape for the rise and
return events must be speci�ed by the designer. This is the design challenge.

The remainder of the chapter deals with the following topics:

� Detailed discussion of various types of displacement functions (the function de-
scribed by the displacement diagram) and their relative advantages and disadvan-
tages;

� Presentation of operational concerns such as pressure angles and associated side
thrust on the follower, and pro�le radius of curvature which impacts contact con-
cerns.

4.2 Displacement Functions

Over the years, many di¤erent displacement functions have been tried for various pur-
poses. The discussion here focuses on rise curves, with the understanding that the dis-
placement function, f (�) can be manipulated in a variety of ways in order to apply it in
various situations. It is useful at this point to discuss those manipulations brie�y.

1. Although often written as simply f (�), the engineer must remember that the angle
� always appears in a cam displacement function as a ratio with the event length,
that is, in the form �=�. Thus the domain of f is always the closed interval [0; 1]
and the range is also [0; 1]. This means that, when it is required to stretch the
function to span a di¤erent cam rotation angle, all that is required is a new value
for the event length, �.

2. The displacement function can be translated, so that it operates over a di¤erent
portion of the cam cycle, by simply subtracting the new beginning point in the
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argument. Thus, for f (�=B) that would naturally as start to rise when � = 0;
the beginning of the rise can be translated to the position � by simply writing
f [(� ��) =�] . Notice that the argument is zero at the beginning point (� = �),
and it is one for � = �+ �.

3. To create a return curve, the rise function f (�) can turned upside down by simply
subtracting it from one after being suitably translated, so that the return function
is 1� f (�=�).

4. Another way to create a return curve is to �ip the rise function from left-to-right.
Suppose that the return event is to occur between �1 and �2; two speci�c loca-
tions separated by the event length �: Then starting with the displacement function
f (�=�), the left-to-right �ip is made by replacing the argument �=� with the new
argument (�2 � �) =�. Thus, when � = �1, the beginning of the event, the argu-
ment becomes (�2 ��1) =� = 1. At the other end of the event, when � = �2, the
argument is (�2 ��2) =� = 0.

The reader might want to consider this question: What is the di¤erence between #3 and
#4, since each develops a return curve based on the original function f (�=�)?

Let the input motion be considered as a rotation through the angle �, and the follower
motion (either linear or angular) is denoted as y (�) = h�f (�). The displacement function
f (�) then completely describes y (�), except for the scale factor h, whether the output
is a linear motion or an angular motion and irrespective of the follower type. Then
applying the chain rule for di¤erentiation, it is evident that the derivatives of this motion
are obtained as follows:

y (�) = h � f (�) displacement function
dy
dt
= hf(�)

d�
d�
dt

velocity function
d2y
d2t
= h

h
f(�)
d�

d2�
d2t
+ f2(�)

d2�

�
d�
dt

�2i
acceleration function

d3y
d3t
= h

h
df
d�
d3�
d3t
+ 3d

2f
d2�

d�
dt
d2�
d2t
+ d3f

d3�

�
d�
dt

�3i
jerk function

(4.1)

Because many cam applications operate at (approximately) constant input speed ( _� =
constant), it is common practice in cam discussions to refer to df=d�; d2f=d2�, and
d3f=d3� as the velocity, acceleration and jerk, but this must be done with great caution
because it is almost never entirely true. The operation of the cam usually implies a
force exerted to move the follower, and the action of that force causes the mechanism to
accelerate. The jerk function, which is the time derivative of the acceleration, may be
unfamiliar to many readers. It is most often used in the context of cam operations and
acoustics.
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Although all of the displacement functions tried in the past super�cially appear to be
reasonable, it is quickly evident that some are much better than others for particular
applications. In order to fully appreciate the sort of di¢ culties that make for a bad cam
design (and are thus to be avoided), the discussion that follows begins with a bad choice
that might seem a good choice to the uninformed.

4.2.1 Simple Harmonic Motion - A Bad Choice

Consider a displacement function to generate a simple harmonic lift over an event length
�. This is accomplished by the function fshm (�)

fshm (�) =
1

2
[1� cos (��=�)] (4.2)

where the subscript shm denotes simple harmonic motion. Note that this function is 0:0
for � = 0, it is 1:0 for � = �, and it is smooth and di¤erentiable everywhere. What could
make it a bad choice?

Consider the derivatives of the proposed displacement function:

f 0shm (�) =
�

2�
sin

�
��

�

�
(4.3)

f 00shm (�) =
�2

2�2
cos

�
��

�

�
(4.4)

f 000shm (�) = � �3

2�3
sin

�
��

�

�
(4.5)

While it is certainly true that the derivatives are smooth everywhere in the interior of
the interval 0 < � < �, it is important to examine their values at the ends of the interval
to evaluate the transition to the next event. It is clear that the end point values are

fshm (0) = 0 fshm (�) = 1

f 0shm (0) = 0 f 0shm (�) = 0

f 00shm (0) =
�2

2�2
f 00shm (�) = � �2

2�2

f 000shm (0) = 0 f 000shm (�) = 0

(4.6)
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If the adjoining event, either before or after the current event, is a dwell, then there
will be a discontinuity in the second derivative, f 00 (�) ; at the transition. The adjoining
dwell has f 00 = 0 at the transition point, while the sinusoid has a nonzero value for
f 00 at each end. This requires that there be a discontinuous change in the acceleration
(assuming _� = constant), and such a discontinuity requires the sudden application of
a force (or torque), an impact event. Since impact is always to be avoided in such a
system, the sinusoidal function is not a satisfactory displacement curve. Continuity in
the displacement function and its derivatives through the entire operating cycle is the
key smooth operation in cam systems, and discontinuities simply must be avoided.

Other simple functions have been considered in the past, such as parabolic and cubic
displacement functions. In most cases, they are unsatisfactory in one respect or another.
Several useful displacement functions are discussed next.

4.2.2 Commercially Useful Displacements

There are many cam applications in manufacturing, applications in which the cycle times
are on the order of 100 cycles/minute or less. This includes various spot welding oper-
ations, pick-and-place operations, package sealing, and other similar applications. A
wide variety of cam displacement curves have been developed over the years for such
applications, and the three presented below are simply a sample.

4.2.2.1 Cycloidal Displacement Curve

Despite the fact that simple harmonic motion is not an acceptable choice in most cases,
one of the attractive aspects of that choice is the fact that a single smooth function
describes the entire process. This leads the cam designer to consider other similar curves
while seeking to avoid the di¢ culties associated with the simple sinusoid. One such
curve that has found wide application is the cycloidal displacement curve, identi�ed by
the subscript cy for cycloidal and described by the following equations:

fcy (�) =
�

�
� 1

2�
sin

�
2��

�

�
(4.7)

f 0cy (�) =
1

�

�
1� cos

�
2��

�

��
(4.8)

f 00cy (�) =
2�

�2
sin

�
2��

�

�
(4.9)

f 000cy (�) =
4�2

�3
cos

�
2��

�

�
(4.10)
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Thus the �rst two derivatives are zero for � = 0 and at � = �, while the third derivative
has a �nite positive value at both ends. This makes it acceptable for many applications
in terms of a transition to a dwell at each end. The negative aspects of this function are
primarily:

� Relatively high velocity at the middle of the event, requiring more kinetic energy
in the entire cam driven mechanism train;

� Relatively steep slopes at the quarter points of the event, resulting in larger contact
forces in the cam system.

4.2.2.2 Modi�ed Sine Curve

The cycloidal curve of the previous discussion utilized a single functional form for the full
duration of the event, but this is not a requirement. The modi�ed sine curve separates
the complete event into three parts, using a di¤erent de�nition for f (�) in each part. In
order to accomplish this, continuity in the function and its derivatives at the junctions
is an absolute necessity. The modi�ed sine, subscript ms, is de�ned as shown in the
equations below:

fms (�) =

8>>><>>>:
1

�+4

h
��
�
� 1

4
sin
�
4��
�

�i
� � 1

8
�

1
�+4

h
2 + ��

�
� 9

4
sin
�
4��
3�
+ �

3

�i
1
8
� � � � 7

8
�

1
�+4

h
4 + ��

�
� 1

4
sin
�
4��
�

�i
� � 7

8
�

(4.11)

f 0ms (�) =

8>>><>>>:
�

(�+4)�

h
1� cos

�
4��
�

�i
� � 1

8
�

�
(�+4)�

h
1� 3 cos

�
4��
3�
+ �

3

�i
1
8
� � � � 7

8
�

�
(�+4)�

h
1� cos

�
4��
�

�i
� � 7

8
�

(4.12)

f
00

ms (�) =

8>>><>>>:
4�2

(�+4)�2
sin
�
4��
�

�
� � 1

8
�

4�2

(�+4)�2
sin
�
4��
3�
+ �

3

�
1
8
� � � � 7

8
�

4�2

(�+4)�2
sin
�
4��
�

�
� � 7

8
�

(4.13)

f
000

ms (�) =

8>>><>>>:
16�3

(�+4)�3
cos
�
4��
�

�
� � 1

8
�

16�3

3(�+4)�3
cos
�
4��
3�
+ �

3

�
1
8
� � � � 7

8
�

16�3

(�+4)�3
sin
�
4��
�

�
� � 7

8
�

(4.14)

Mechanics of Machines c 2019 Samuel Doughty



118 CHAPTER 4. CAMS

As with the cycloidal curve, the modi�ed sine has zero �rst and second derivatives at
both ends of the event, making it suitable for transition to a dwell at either end in many
situations. It accomplishes this with slightly lower values of peak velocity and peak
acceleration than were found with the cycloidal curve.

� The principal negative aspect of the modi�ed sine is the relatively large value of
the third derivative at each end. This is a greater third derivative discontinuity
than that presented by the cycloid.

4.2.2.3 Modi�ed Trapezoidal Curve

The use of a multi-segment de�nition for the displacement function is further exploited
with the modi�ed trapezoidal motion curve. Consider �rst three de�nitions:

f1 (�) =
1

� + 2

�
2�

�
� 1

2�
sin

�
4��

�

��
(4.15)

f2 (�) =
1

� + 2

"
1

4
� 1

2�
+
2

�

�
� � �

8

�
+
4�

�2

�
� � �

8

�2#
(4.16)

f3 (�) =
1

� + 2

�
��
2
+ 2 (� + 1)

�

�
+
1

2�
sin

�
4�
� � �=2

�

��
(4.17)

Rothbart [1] uses these three functions to de�ne the �rst half of the modi�ed trapezoidal
curve as

f (�) =

8>>><>>>:
f1 (�) 0 � � < �=8

f2 (�) �=8 � � < 3�=8

f3 (�) 3�=8 � � < �=2

(4.18)

But notice that this only gives a de�nition over the �rst half of the event! How is the
remainder of the event to be de�ned? This provides an opportunity to demonstrate how
these functions can be manipulated to apply to di¤erent parts of the overall displacement
function. The whole process begins with a major observation: The second half is to be
an inverted mirror image of the �rst half of the event. This means that the same three
functions form the basis for the second half, but with two modi�cations:

1. If the functions f1, f2, and f3 in the �rst half of the event are considered as measur-
ing displacement up from s = 0, then those same functions will be used to measure
displacement downward from s = 1, so the forms of interest are 1� fj;
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2. In the �rst half of the event, the angle � measures distance from the beginning of
the event. For the second half of the event, the angle used must measure distance
from end of the event, that is, � � �:

This leads to the de�nition of three more functions for the second half of the event:

f4 (�) = 1� f3 (� � �) =
���2 + 4�� (1 + �) + sin

h
2�(2���)

�

i
2�� (� + 2)

(4.19)

f5 (�) = 1� f2 (� � �)

=
�
�
33�2�2 � 8�2 � 32��� � 112�2�� + 64�2�2

�
16��2 (� + 2)

(4.20)

f6 (�) = 1� f1 (� � �) =
2�2� + 4�� + sin

h
4�
�
(� � �)

i
2�� (� + 2)

(4.21)

With these three additional functions de�ned, the de�nition for the modi�ed trapezoidal
curve, subscript mt, is

fmt (�) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

f1 (�) 0 � � < �=8

f2 (�) �=8 � � < 3�=8

f3 (�) 3�=8 � � < �=2

f4 (�) �=2 � � < 5�=8

f5 (�) 5�=8 � � < 7�=8

f6 (�) 7�=8 � � � �

(4.22)

4.2.2.4 Comparisons

In Figure 4.4, there is a graphical comparison of the three displacement functions dis-
cuss just above. There are several points to be made regarding these graphs and the
accompanying Table 4.1.

1. All the curves in each row are plotted to the same vertical scale, and all plots
have the same horizontal scale, 0 � � � � where for convenience in plotting, the
value � = 1 is assigned. This means that the peak values for each function (or
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Figure 4.4: Sine, andModi�ed Trapezoidal Displacement Functions and Their Derivatives

function derivative) can be visually compared. For example, in the �rst row, all
of the f (�) values are in the range [0; 1] (as expected), while in the second row,
both the cycloidal and modi�ed trapezoidal motions have peak value 2.0, while the
modi�ed sine peak is somewhat less.

2. On each row, at the left margin, the maximum value of the function (or the deriv-
ative) is plotted. These values are rounded to two decimal places to conserve space
on the plot. More precise values of the extreme values for each function are given
in Table 4.1.

3. Looking at the top row, the f (�) curves for each displacement function, it is clear
that they all appear identical to the eye. It is only in the derivatives that the
di¤erences become apparent. This shows the critical fact that extremely small
variations in the cam pro�le can have a large impact on cam-follower operation.

4. In the second row, there are only small di¤erences evident in the plots of f 0 (�),
although the almost straight sides on the modi�ed trapezoidal motion curve tend
to stand out. The somewhat reduced peak value associated with the modi�ed sine
is attractive in that it indicates less kinetic energy in the cam-follower system.

5. In the third row, there are clear di¤erences between the three displacement func-
tions in the second derivatives. Even so, they also remain somewhat similar, being
positive over the �rst half of the event and negative over the second half. The lower
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peak values associated with the modi�ed trapezoid indicate reduced contact forces
between the cam and follower because of less acceleration required.

6. In the last row, all three functions show �nite end point discontinuities in f 000 (�).
These are least severe with the cycloid and worst with the modi�ed trapezoid.

Table 4.1 Extreme Values for Displacement Functions

Cycloidal Modi�ed Modi�ed

Motion Sine Trapezoidal

Motion Motion

f (�) = 1:00000 1:000000 1:000000

f 0 (�) = 2:00000=� 1:759603=� 2:000000=�

f 00 (�) = 6:283185=�2 5:524590=�2 4:888124=�2

f 000 (�) = 39:478418=�3 69:466357=�3 61:425975=�3

These are well known displacement functions, discussed by numerous authors including
Moon [2], Rothbart [3], and Norton [4] :

4.2.3 Polynomial Displacement Functions

For high speed applications, the displacement functions of the previous sections do not
perform adequately. This is particularly true for internal combustion engines, where the
operating speed for the cam is often several thousand cycles per minute. In these situa-
tions, displacement functions expressed as polynomial power series are often preferred.

For the polynomial displacement functions, a polynomial rise function is written in the
form

f (�) = co + c1 (�=�) + c2 (�=�)
2 + � � �+ cn (�=�)

n (4.23)

where, as before, � is the event length. The complete de�nition of the function requires
(1) choosing the degree n for the polynomial, and (2) determination of the coe¢ cients,
co, c1, . . . , cn to satisfy the necessary transition conditions at the ends of the event. The
di¤erentiation of such a form is trivial and need not be written out here.
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4.2.3.1 3-4-5 Polynomial Displacement

The name 3-4-5 Polynomial is a description of the nonzero terms in the �nal polynomial,
along with the subscript 345. For the 3-4-5 polynomial, the degree of the polynomial
is chosen as 5, so that there are six coe¢ cients to be determined. The end of event
transition conditions that can be imposed are:

f (0) = 0 f 0 (0) = 0 f 00 (0) = 0

f (�) = 1 f 0 (�) = 0 f 00 (�) = 0
(4.24)

When the polynomial and its derivative are evaluated at the ends, the result is six
equations in the six unknown coe¢ cients. When these equations are solved, the �nal
form for the polynomial is

f345 (�) = 10 (�=�)3 � 15 (�=�)4 + 6 (�=�)5 (4.25)

= (�=�)3 f10� (�=�) [15� 6 (�=�)]g (4.26)

It is a simple matter to di¤erentiate this function to verify that it does indeed satisfy
the six conditions speci�ed. But note also that no condition is imposed upon the third
derivative at the transition points, and it has a �nite positive value at each end.

4.2.3.2 4-5-6-7 Polynomial Displacement

From the result of the previous section, it is evident that, if zero jerk is required at both
transitions, a polynomial of higher degree is required. Thus choose n = 7 and impose
the following transition conditions:

f (0) = 0 f 0 (0) = 0 f 00 (0) = 0 f 000 (0) = 0

f (�) = 1 f 0 (�) = 0 f 00 (�) = 0 f 000 (0) = 0
(4.27)

The solution of the resulting equations for the polynomial coe¢ cients produces the form

f4567 (�) = 35 (�=�)4 � 84 (�=�)5 + 70 (�=�)6 � 20 (�=�)7 (4.28)

= (�=�)4 (35 + (�=�) f�84 + (�=�) [70� 20 (�=�)]g) (4.29)
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Again, it is a simple matter to verify that this function does indeed satisfy all of the eight
transition conditions shown. In a manner similar to the previous case, the name 4-5-6-7
Polynomial is a description of the nonzero terms in the �nal form and identi�ed with the
subscript 4567.

There are many other options available using the power series polynomial form. These
include the assignment of more transition constraints and the assignment of speci�c values
at points interior to the event. As with any application of higher order power series, there
is also the risk of inducing unwanted motion features, so this approach must be employed
with some discretion.

4.2.3.3 Polynomial Evaluation - Horner�s Method

The general problem of evaluation of polynomials and their derivatives has received con-
siderable attention in applied mathematics, both in regard to potential for rounding
errors and computing speed. When the signs alternate, as they do in the cam displace-
ment applications, there is the possibility of serious loss of accuracy due to subtraction
of nearly equal quantities. A paper by Burrus, et al. [5] suggests some ideas, based on
what is usually called Horner�s method, that can be adapted to the evaluation of the
polynomial forms found in cam displacement functions. In particular, consider again the
3-4-5 polynomial cam displacement in its factored form, equation (4.26), here re-written
as

f345 (�) = a3 (�=�)
3 + a4 (�=�)

4 + a5 (�=�)
5

= (�=�)3 f(�=�) [(�=�) a5 + a4] + a3g (4.30)

where

a3 = 10 a4 = �15 a5 = 6

Horner�s method uses a loop structure to numerically evaluate the sequence of parenthe-
ses, beginning with the inner most parenthesis pair and working outward. A fragment of
computer code implementing this approach is shown below. The fragment includes (a)
a portion of the main program where the parameters are set and a loop is established
to cycle through many values of � such that 0 � � � �; and (b) a subroutine Cam345
that evaluates the polynomial and its �rst three derivatives at each point. The central
operation is executed in the For-Next loop of the subroutine in which f345; f 0345; f

00
345

and f 000345 are evaluated, starting with ip=5 and stepping backwards to ip=3; this is the
sequential evaluation of each parenthesis pair.
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(Main Program)

beta=...
imx=...
FOR ix=1 to imx

theta=(ix-1)*beta/(imx-1)
CALL Cam345

NEXT ix

SUB Cam345
DIM a(5)
a(1)=1 ! this assignment of a(1) and a(2) is req�d
a(2)=1
a(3)=10
a(4)=-15
a(5)=6
z=theta/beta
f=0
fp=0
fpp=0
fppp=0
FOR ip=5 to 3 step -1

f=f*z+a(ip)
fp=z*fp+ip*a(ip)
fpp=z*fpp+ip*(ip-1)*a(ip)
fppp=z*fppp+ip*(ip-1)*(ip-2)*a(ip)

NEXT ip
f=f*z^3 ! f(theta)
fp=fp*z^2/beta ! f�(theta)
fpp=fpp*z/beta^2 ! f��(theta)
fppp=fppp/beta^3 ! f���(theta)

END SUB

4.2.4 Example Problem

As an example of the application of the several displacement functions presented above,
and particularly their manipulation to serve in di¤erent places, consider the cam timing
diagram shown in Figure 4.5. The objective here is to develop the complete displace-
ment description, and to evaluate the maximum velocity and acceleration when the cam
rotation rate is constant at _� = 200 rad/s.

Note particularly the use of the capital Greek theta (�) to represent the typical rota-
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Figure 4.5: Timing Diagram for Example Problem

tion of the cam. This is done to distinguish it from the lower case letter, �, used to
represent angular position within the event. Mind the distinction; it is critical to correct
understanding!

There are four events in the cam cycle1, de�ned by the transition locations �1 = 57o,
�2 = 142

o, �3 = 235o, and �4 = 360o. Evaluation for each event is discussed separately
here:

1. Low Dwell �The length of the �rst event is �1 = �1 = 0:99484 rad. The displace-
ment during this event is trivial,

y (�) = _y (�) = �y (�) = 0 (4.31)

2. 3-4-5 Polynomial Rise �The length of the second event is �2 = �2 � �1 = 85o =
1:4835 rad. The relative rotation angle is �2 = ���1. This is employed in the evaluation
of the motion, either by means of equation (4.25) or by equation (4.30) implemented in
the subroutine Cam345 previously shown.

3. High Dwell �The length of the high dwell is �3 = �3 � �2 = 93o = 1:6232 rad.
The displacement during this event is again trivial,

1For the purposes of this book, the reference angular position of the cam is as shown in Figure 4.3,
with � = 0 at the end of the low dwell and the beginning of the rise curve. However, for this one example,
the displacement diagram in Figure 4.5 is shifted to begin with a low dwell. This is done purposely to
illustrate how the diagram can be mathematically shifted along the rotation axis as well as how rise
curves can be reversed to serve as return curves.
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y (�) = 0:0085 m (4.32)

_y (�) = �y (�) = 0 (4.33)

4. Cycloidal Return �The length of the �nal event is �4 = �4��3 = 2: 1817 rad. For
this event, the cycloidal motion equations are required, equations (4.7), (4.8), (4.9) and
(4.10). The relevant angular argument for those equations, �, is that shown in Figure 4.5
as �4 = �4 � �, with the event length � = �4. Note particularly what happens in the
derivative calculation for this event. The process described in the previous paragraph
says that, within this event,

y (�) = h � fcy (�4 ��) (4.34)

so that the velocity is

y =
dy

d�

d�

d�

d�

dt
= h

dfcy
d�

(�1)! = �h!f 0cy (�) (4.35)

Because of the substitution used, �4 = �4��, a negative sign is introduced in the di¤er-
entiation. When the second derivative is calculated, another negative sign is introduced,
e¤ectively canceling the �rst. The result is that the algebraic signs of the �rst and third
derivatives must reversed as a result of this substitution.

A computer code implementing the entire process above is listed below. Note that it
assumes the existence of four subroutines:

sub LowDwell �sets f and all derivatives to zero;

sub Cam345 �evaluates the function f345 and derivatives during the rise event;

sub HighDwell �sets f = 1 with all derivatives equal to zero;

sub Cycloid �evaluates the function fcy and derivatives for the return.

None of these four subroutines is listed here, but Cam345 is listed previously. When the
computer code is executed, the extreme values are found to be:
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Max Position jyjMax = 0:0085 m

Max Velocity
��dy
dt

��
Max

= 2:147997 m/s

Max Acceleration
���d2yd2t ���

Max
= 891:91649 m/s2

Max Jerk
���d3yd3t ���

Max
= 1249601 m/s3

Not surprisingly, the very high jerk value is at the transitions before and after the second
event, the 3-4-5 polynomial cam. This is not likely to be considered an acceptable cam
design. The computer code fragment is listed below:

Computer Code Fragment for Example Problem

! Problem Data
h=0.0085
omega=200
capTH1=57*pi/180
capTH2=142*pi/180
capTH3=235*pi/180
capTH4=360*pi/180

beta1=capTH1
beta2=capTH2-capTH1
beta3=capTH3-capTH2
beta4=capTH4-capTH3

thmx=... ! number of angular positions
FOR ith=1 to thmx

capTH=(ith-1)*2*pi/(thmx-1)
ths(ith)=capTH ! save this value
IF capTH<capTH1 then ! event 1

CALL LowDwell
ELSE IF capTH1<=capTH and capTH<capTH2 then ! event 2

beta=beta2 ! set event length
th=capTH-capTH1 ! lower case theta2
CALL Cam345

ELSE IF capTH2<=capTH and capTH<capTH3 then ! event 3
CALL HighDwell

ELSE IF capTH3<capTH then ! event 4
beta=beta4 ! set event length
th=capTH4-capTH ! lower case theta4
CALL Cycloid
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fp=-fp ! th4 increases backwards!
fppp=-fppp ! th4 increases backwards!

END IF
yy(ith)=h*f ! position
yd(ith)=h*omega*fp ! velocity
ydd(ith)=h*omega^2*fpp ! acceleration
yddd(ith)=h*omega^3*fppp ! jerk
ymx=max(ymx,yy(ith))
ydmx=max(ydmx,abs(yd(ith)))
yddmx=max(yddmx,abs(ydd(ith)))
ydddmx=max(ydddmx,abs(yddd(ith)))

NEXT ith
PRINT " ymx = ";ymx;" m"
PRINT " ydmx = ";ydmx;" m/s"
PRINT " yddmx = ";yddmx;" m/s^2"
PRINT " ydddmx = ";ydddmx;" m/s^3"

SUB Plotter
...
END SUB

SUB LowDwell
...
END SUB

SUB Cam345
...
END SUB

SUB HighDwell
...
END SUB

SUB Cycloid
...
END SUB

4.3 Practical Cam System Design

The foregoing discussion regarding displacement functions makes it clear that cam design
analysis is rather computationally intensive. The sections that follow further demonstrate
this fact. The wide availability of digital computation makes possible today far more
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detailed analysis than would ever have been possible in earlier days. For this reason, it
is assumed that anyone undertaking cam design analysis today has full access to digital
computation, including the ability to develop computer code as required.

The design requirements for cam systems often include limitations on extreme values for
velocity, acceleration, jerk, and radius of curvature. Excluding points of discontinuity,
these functions are most easily studied by simply tabulating and graphing them over
the appropriate domain. For rotating cams, most of these can be very well described
by simply evaluating the functions at one degree intervals. While this may not show
the mathematically true extreme values (which rarely occur at integer degree locations),
in most cases it provides an adequate engineering approximation to the extreme value.
Thus, with a cam-follower system operating at constant speed, computer generated plots
of y (�) ; _y (�) ; �y (�) based on one degree tabulations of the functions provide the necessary
visual understanding and the computer can also track the extreme tabulated value, all
as illustrated in the computer code above. This also provides for easy and rapid design
iteration with alternate parameter values. It is strongly recommended that this approach
be adopted in practice, and certainly in working classroom problems.

4.4 Kinematic Theorem for Rigid Bodies

Consider a rigid body rotating about the �xed point O, as shown in Figure 4.6. The
points denoted as O; 1; and 2 are �xed in the body and move with it. The rotation of
the body is described by the angle � measured from a stationary horizontal line to the
line O � 1. There is a second line inscribed on the body from point 1 to point 2 and
beyond, designated A � B. Let i; j; and k be the base vectors for the �xed coordinate
system, while e12 is a unit vector along A�B.

Figure 4.6: Velocities at Points Along the Line A-B on a Rigid Body
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The position of point 2 is expressed in terms of the position of point 1 as

R2 = R1 + d e12 (4.36)

where d = distance from point 1 to point 2: The velocity of point 2 is then obtained by
di¤erentiation, using the rule for di¤erentiation of a rotating vector of �xed length,

V2 = _R2 = V1 + _� k� d e12 (4.37)

The component of V2 along the line A�B is

e12 �V2 = e12 �
�
V1 + _� dk� e12

�
= e12 �V1 (4.38)

The last term is zero because k� e12 is perpendicular to e12. The last result shows that
the component of velocity for point 2 along A� B is the same as that for point 1 along
the same line, no matter what value the distance d may have. This is summarized in the
following theorem:

All points along a line inscribed on a rotating body have the same component
of velocity along that line.

If the axis is not stationary, an additional velocity component is imposed upon the entire
body. In that case, the theorem remains true, although the development is slightly more
complicated.

The theorem becomes completely obvious when considered on physical grounds in view
of the de�nition of a rigid body. Recall that the de�nition includes the fact that the
separations between all particles must remain constant. Consider any line through a
particular particle. For all particles along that line, the components of their velocities
along the line must be the same in order to avoid changing the separations between
particles along the line. This theorem is used repeatedly in the discussion of cam systems
and gears.
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4.5 Cam�Follower Systems

As mentioned in the Introduction, there is a wide variety of cam and follower system
in use today, but for present purposes, only disk cams are considered. Even with that
limitation, there are still four types commonly found; two of these are discussed in detail
below, while the other two are only sketched.

In the previous portion of this chapter, much attention has been given to the description
of follower motion in terms of displacement functions. For this section, it is assumed that
a displacement function is selected, and what remains is to de�ne the speci�c cam that
can impart the required motion to the follower.

In times past, cam design was done entirely by graphical methods, with a draftsman
laying out the shape of the cam, often with the aid of a French curve. As demonstrated
in the earlier study of displacement functions, tiny di¤erences in the displacement, which
are the natural result of tiny variations in the cam shape, can have a very large impact on
the operating characteristics of the cam and follower system. Just as digital computation
makes possible the very precise description of the displacement function, in the same
manner, it also makes possible the accurate description of the shape of the cam disk
itself. This process is called analytical design, meaning to mathematically describe all of
the details of the cam shape. This is the approach followed below; much of this is based
on the work of Raven [6] :

4.5.1 Translating Flat-faced Follower Systems

Figure 4.7 shows a disk cam with a �at-faced, translating follower. The term �at-faced
refers to the fact a �at surface on the follower bears against the cam disk. The term trans-
lating means that the motion of the follower is rectilinear translation without rotation.
Notice that the cam is shown rotating counter clockwise (CCW).

In order to describe the rotation of the cam, both a stationary reference line and a line
�xed on the cam are required. The self-evident choice for the stationary reference is the
line shown, a line through the cam axis of rotation and parallel to the follower motion.
The more di¢ cult question is what to use for the rotating line on the cam. This is
di¢ cult because of the lack of identi�able features on the cam itself; it has no holes,
sharp corners, or other well de�ned features, so this presents some di¢ culty, both in
theory and in manufacturing practice. There are three items to note at this point:

1. For instructional purposes, it is most convenient to chose the line dOM on the
cam (as shown in Figure 4.7) as the rotating mark, where M is the transition
from the base circle onto the rise event. This choice is consistent with Figure 4.3
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and the discussion given there regarding the displacement curve, where � = 0 is the
beginning of the rise event, following the preceding dwell. With this understanding,
the system as shown in Figure 4.7 is in the rise event. This choice is used in the
development below.

2. For manufacturing and applications, the linedOT; where T is the highest point on
the cam, is often the preferred rotating reference, with the cam understood to be
rotating in the clockwise sense. This is particularly true in the automotive indus-
try where point of maximum follower displacement is the most easily identi�able
location in the cam cycle [7]. Most of the cams used in internal combustion engines
have no high dwell; they employ simply rise-return-dwell displacement functions.
With this understanding, the system as shown in Figure 4.7 is in the return event
in view of the indicated direction of cam rotation.

3. It is simply a matter of mathematically translating the displacement curve by the
angle \MOT to move from one description to the other. This angle may have any
value; it should not be assumed to be a right angle.

The reference line dOM may be thought to be inscribed on the cam and rotating with
it, so that the angular position of the cam is described by the angle � as has been
done previously. (The line dOM exists without regard to whether there is any physical
manifestation of it; it is fully de�ned by the two points O and M: Inscribing it upon
the cam surface would only serve to make it visible.) The trace point is any point in
the �at lower surface of the follower; all such points have the motion described by the
displacement function. The base radius, Rb, de�nes a circle representing the closest that
the trace point can approach the cam axis of rotation. For this system, the motion of
the trace point is written as

y (�) = Rb + h � f (�) (4.39)

where

Rb = base radius

h = full lift value

f (�) = displacement function

The choice of a base radius value determines the overall size of the cam disk. It is a
design decision, as are h and the function for f (�); it is here assumed that the choice
has been made, although more is said about the base radius choice below.
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Figure 4.7: Cam With Flat-faced Translating Follower

4.5.1.1 Contact Location

The line of contact is a line parallel to the follower motion and passing through the point
of contact between the follower and the cam; it is located at the variable distance d to the
right as shown. For continuous contact between the follower and the cam (a necessary
condition for the cam to control the follower motion), the velocity of the contact point
in the follower must always be exactly the same as the vertical velocity of the contact
point in the cam disk. By the theorem of the previous section, the last is the same as the
vertical velocity of every other point along the line of contact in the cam, in particular,
the same as that of point Q where the velocity is easily expressed. Thus for the contact
point in the cam, the vertical velocity, taken positive upward, is

Vc = _� �dOQ = _� � d (4.40)

while in the follower, the vertical velocity is

Vf =
dy

dt
=

d

dt
[Rb + h � f (�)] = _� h f 0 (�) (4.41)

To satisfy the continuous contact requirement, these two expressions must be equal so
that
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d = h � f 0 (�) (4.42)

Thus the contact is located a distance d to the right of the cam axis of rotation; and the
extreme values are

dmin = h f 0min (4.43)

dmax = h f 0max (4.44)

4.5.1.2 Cam Pro�le

The term cam pro�le refers to the actual shape of the cam disk (which is not the same
as the displacement function), and it is described relative to the reference line dOM by
the polar coordinates (R; �). Consider the two loop equations

R sin (�� �) = d = h � f 0 (�) (4.45)

R cos (�� �) = y (�) = Rb + h � f (�) (4.46)

The polar coordinates of the contact point are easily determined as

� = � + arctan

�
h � f 0 (�)

Rb + h � f (�)

�
(4.47)

R =
n
[h � f 0 (�)]2 + [Rb + h � f (�)]2

o1=2
(4.48)

This result describes the shape of the actual cam surface, the polar coordinates (R; �) ;
in terms of the parameter �. To generate the entire shape, it is only required to let �
sweep through the full range [0; 2�].

4.5.1.3 Contact Stresses

When two bodies are pressed together, as in the case of the cam and follower, there is local
deformation around the point of contact and the contact force is distributed over a �nite
area around that point. The resulting stresses near the point of contact can lead to surface
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fatigue damage, such as cracking and spalling, with accelerated wear. Stresses arising
from one body bearing directly on another are called Hertz contact stresses after Heinrich
Hertz who developed their mathematical description in the 19th century. Although the
actual situation is always three dimensional, contact stresses are usually evaluated using
two dimensional elastic theory, either plane stress or plane strain. It is important to be
clear which approximation is appropriate for each particular case.

Plane Stress. Consider a thin plate in the X-Y plane subject to in-plane
loads only. The upper and lower surfaces are stress free. The stresses �zz; �xz;
and �yz are thus zero on both boundaries and may reasonably be assumed
small through the thickness. The only remaining non-zero stresses are the two
dimensional system �xx; �xy, and �yy. This condition is called plane stress.

Plane Strain. Consider a cylinder extending along the Z-axis with loading
perpendicular to the cylindrical surface at various points along the length.
Particles in the interior of the body are constrained against axial motion by
the presence of the adjacent material on either side. Thus the strains "zz;
"xz; and "yz must be zero, leaving only the two dimensional strain system
composed of "xx; "xy; and "yy. This is the condition called plane strain.

In many applications, a disk cam is relatively thin and the plane stress approximation is
valid. This may be less true for something like an automotive cam shaft, where the cam
is a part of an extended shaft and only slightly larger than the shaft itself; in that case,
the plane strain approximation may be more appropriate.

Hertz�results are given in many places on the Internet, but they are particularly well
done in the long ago work of Spotts [8]. The principal result is this; for two curved bodies
in plane stress contact, the maximum normal stress is given by

�max =

s
F

�t

(�1 + �2)

�1�2

E1E2
(E1 + E2)

(4.49)

where

F = total contact force

t = axial length of the contact, typically the cam thickness

E1; E2 = Young�s modulus values for each of the two materials

�1; �2 = local surface radii of contact for the two bodies

In the event that one of the bodies is �at at the point of contact, the associated radius
of curvature is in�nite, and the previous equation reduces to
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�max =

s
F

�t

1

�

E1E2
(E1 + E2)

(4.50)

where � is the local radius of curvature of the body that is not �at.

Similar results are available for the plane strain case, as may be found in the literature.
It should be mentioned that this information is applicable to cams of all sorts, not only
those employing �at-faced translating followers.

4.5.1.4 Radius of Curvature

The stress analysis results of the previous section points to a need to determine the cam
pro�le radius of curvature. There are also operational and manufacturing concerns that
require this same information. For proper operation, the cam pro�le must be smooth
and have a continuously turning tangent line. If this is not true, then the cam has a cusp
or "corner" and it is obvious that there are stress and wear problems at such a corner.

For a typical cam pro�le, the radius of curvature varies from point to point along the
cam surface. Thus for �nite rotations, this variable radius of curvature must be taken
into account. However, for in�nitesimal rotations, the cam surface may properly be
locally approximated as a circular arc with an associated center of curvature. As long as
attention is focused only on the local description, the shape of the remainder of the pro�le
is irrelevant (remember that only in�nitesimal rotations are considered!). In Figure 4.8,
the contact zone is replaced by a circular arc while the remainder of the cam is replaced
by an irregular curve to emphasize that it plays no role in this description. The local
center of curvature is the point C�, and the radius of curvatures is denoted as �. The
center of curvature has the polar coordinates (Rc; C), both unknown at the beginning.

Consider the pair of position equations

d (�) = h f 0 (�) = Rc sin (C � �) (4.51)

y (�) = Rb + h � f (�) = Rc cos (C � �) + � (4.52)

Di¤erentiating the �rst of these with respect to the rotation angle gives

h � f 00 (�) = �Rc cos (C � �) (4.53)

When this last is added to the second position equation, both Rc and C are eliminated,
and the result is readily solved for the radius of curvature, �:
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Figure 4.8: Radius of Curvature Determination

� = Rb + h � [f (�) + f 00 (�)] (4.54)

This provides a means to determine the local radius of curvature for every point on the
cam pro�le simply by assigning values for � over the range [0; 2�] :

As drawn, the center of curvature, C�, is shown below the follower, the usual location. It
is important to note, however, that the center of curvature can fall above the follower. In
that event, the radius of curvature is negative. This is a completely unacceptable design
because it means that there cannot be continuous contact with the �at-faced follower
throughout the cam cycle. A roller follower could overcome that objection, provided that
the radius of the roller was smaller than the magnitude of the radius of curvature. Even
in that case, there are manufacturing objections related to the radii of milling cutters
and grinding wheels. Thus hollow pro�les (pro�les having negative radius of curvature)
are used only in rare circumstances and then only with considerable care regarding the
several associated di¢ culties.

4.5.1.5 Base Radius Determination

To this point, the base radius value has been assumed to be simply assigned, but nothing
has been said about how that assignment is made. In view of the comments just made
above and the expression developed for the radius of curvature, guidance for this choice
is now at hand. In most cases, it is desirable to minimize the base radius in order to
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minimize material costs, weight, and size. To this end, the last result above is solved for
the minimum acceptable base radius, with the result:

Rbmin = f�� h � [f (�) + f 00 (�)]gmin (4.55)

The minimum acceptable radius of curvature may be assigned by manufacturing con-
siderations or based on contact stress considerations. If the contact force is constant,
as with a gravity loaded follower on a slowly moving system, the minimum acceptable
radius of curvature is easily determined based on the allowable stress. For systems with
signi�cant acceleration involved and a spring loaded contact, the process becomes more
involved, requiring an iterative approach. For whatever approach is used, note that it
is the minimum of the sum on the right that is required, not the sum of the individual
minima.

4.5.1.6 Milling Cutter Coordinates

In the manufacture of cams, numerically controlled milling machines are most commonly
used today. The milling cutter is a rotating, cylindrical tool with cutting edges evenly
spaced around the circumference. To manufacture a particular cam, it is necessary to
determine the path of the milling cutter axis of rotation around the cam pro�le. This
information may be required in either global coordinates, (xm; ym) or in cam body coor-
dinates (um; vm), depending on the particular system employed.

Figure 4.9: Milling Cutter Coordinate Determination for Cam With Flat-Faced Trans-
lating Follower
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Figure 4.9 shows the cam being cut by a cutter of radius Rm; located at the global
coordinates (xm; ym). The "shadow" of the intended �at-faced translating follower is also
shown in broken line to show the relation between the cutter and the planned follower. It
is apparent that the milling cutter coordinates for this position, expressed in the global
coordinate system, are simply

xm = d = h � f 0 (�) (4.56)

ym = y (�) +Rm = Rb + h � f (�) +Rm (4.57)

The body coordinate system is de�ned by the axis of rotation and the point M where
the lift begins; this line is the V�axis. The U�axis is perpendicular to V , as shown.
Expressing the milling cutter coordinates in the body coordinates is accomplished by a
rotation,

um = xm cos � + ym sin � (4.58)

vm = �xm sin � + ym cos � (4.59)

4.5.2 Translating Radial Roller Follower Systems

In order to have a translational output motion (as in the previous section) with reduced
friction and wear, a follower equipped with a roller tip is employed; such a system is
shown in Figure 4.10. As shown there, the follower is radial, meaning that the line of
follower motion passes through the cam axis of rotation. In some situations, the follower
is o¤set laterally, but only radial roller followers are considered here. As in the previous
case, the cam axis of rotation is designated as O, and the rotation angle is �. The
natural choice of reference lines, the radial line along the follower axis and the line to the
beginning of the rise, are chosen for use here. All of the comments made in the previous
section regarding the choice of reference lines should be understood to apply here as well.

For a follower of this type, the trace point, that is, the point that executes the motion
speci�ed by the follower displacement curve, is the axis of the roller follower, as shown
in Figure 4.10: Three new terms must also be de�ned for this follower type: prime circle,
pitch curve, and pressure angle.

Prime Circle: The radius of the roller follower is a design decision, similar to the base
circle. In most cases, it is governed by the commercial availability of suitable rollers; in
any event, it is assumed to be assigned. With Rf chosen, the prime circle is a geometric
(not physical) circle, concentric with the base circle and one follower radius outside the
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Figure 4.10: Cam With Radial Roller Follower

base circle. It is clear than the trace point cannot come closer to the cam axis of rotation
than the prime circle. Thus the prime circle plays a role for the roller follower system
similar to that of the base circle for a �at-face follower system.

Pitch Curve: The pitch curve is the path of the trace point around the cam body. It
is exactly one follower radius outside the cam pro�le at all points. A part of the pitch
curve includes the prime circle, but over the active portion of the follower motion, the
pitch curve is outside the prime circle.

Pressure Angle: There is a natural reference line along the line of motion for the radial
roller follower. As seen in Figure 4.10, the line of contact between the cam pro�le and
the roller follower is usually at an angle to the �rst reference line. This angle is called
the pressure angle, denoted as �: When the point of contact is on the base circle, the
pressure angle is zero (true only for radial roller followers). At other contact positions,
the pressure angle may be positive (as shown) or negative, but in either case, it results
in lack of parallelism between the contact force and the motion of the follower.

4.5.2.1 Pressure Angle Determination

With these de�nitions in hand, it is evident that the position of the trace point is given
by
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y (�) = Rb +Rf + h � f (�) (4.60)

where the sum of the �rst two terms give the radius of the prime circle while the third
term is the displacement arising from the cam pro�le. The next step is to determine the
pressure angle, �.

At the point of contact between the cam pro�le and the roller follower, there is shown
(a) a line representing the tangent plane at that point, (b) a point F in the follower at
the contact location, and (c) a point C in the cam also at the contact location. It is clear
than that F and C must be touching, even though they belong to separate components.
In order for the cam to control the motion of the follower, there must be continuous
contact between the cam pro�le and the follower surface. If they separate, the cam no
longer controls the follower motion; if one penetrates the other, a physical impossibility
occurs. Consequently, they must both remain exactly at the same location, even though
both points are moving. This condition is satis�ed if, and only if, the velocities of both
points, along the line of contact, are the same. Note that it is not necessary that their
total velocities match; the only requirement is regarding the velocity components along
the line of contact.

By the rigid body theorem of Section 4.3, in the cam, all points along the line of contact
have the velocity component _�dOQ along the line of contact, but dOQ is related to the
pressure angle and the follower displacement, so that

VCk =
_� � y (�) sin� (4.61)

In the follower, the complete velocity of point F consists of the vertical velocity of the
follower ( _y) plus a tangential component due to the rotation of the roller. The component
of velocity at F in the direction of the line of contact is therefore

VFk = _y cos� = _� � hf 0 (�) cos� (4.62)

Thus the requirement for continuous contact between the cam pro�le and the roller
follower provides an expression for the pressure angle when these two velocity expressions
are equated:

� = arctan

�
hf 0 (�)

Rb +Rf + f (�)

�
(4.63)

The pressure angle is a measure of the lateral component of the follower contact force, a
force that tends to bind the follower shaft in its guide, resulting in increased friction and

Mechanics of Machines c 2019 Samuel Doughty



142 CHAPTER 4. CAMS

wear. Experience indicates that for satisfactory cam performance the maximum pressure
angle should not exceed 30o = �=6 radians. From the preceding equation, it is evident
that increasing either component of the prime circle radius decreases the pressure angle,
so that these design choices becomes a means to control the pressure angle.

4.5.2.2 Cam Pro�le

Using the pressure angle determined in the previous section, the cam pro�le polar coor-
dinates, (R; �), with respect to the body coordinates are determined here. Referring to
Figure 4.11, it is evident that

Figure 4.11: Cam Pro�le Determination for Radial Roller Follower

R sin (�� �)�Rf sin� = 0 (4.64)

R cos (�� �) +Rf cos�� y (�) = 0 (4.65)

from which the pro�le coordinates are

R =
�
y2 (�) +R2f � 2Rf y (�) cos�

�1=2
(4.66)

� = � + arctan

�
Rf sin�

y (�)�Rf cos�

�
(4.67)
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As in the case of the �at-faced translating follower, the cam pro�le coordinates are
expressed in terms of the cam rotation angle, �, as a parameter.

4.5.2.3 Radius of Curvature

For a radial roller follower cam system, the cam radius of curvature determination is
very similar to that given previously for the cam with a �at-faced translating follower.
As before, the cam pro�le is locally replaced with a circular arc, and the center of that arc
is the center of curvature, designated C�, at a distance Rc from the cam axis of rotation.
The distance from the center of curvature to the cam pro�le is then the cam radius of
curvature at the contact point, denoted as �.

Figure 4.12: Radius of Curvature Determination With Radial Roller Follower

The following two loop equations apply:

Rc sin (C � �)� (�+Rf ) sin� = 0 (4.68)

Rc cos (C � �) + (�+Rf ) cos� = y (�) (4.69)

Di¤erentiating the �rst equation with respect to � gives

�Rc cos (C � �)� (�+Rf )�
0 cos� = 0 (4.70)

When this is added to the second equation, the result is solvable for the radius of curva-
ture,
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� (�) =
y (�)

[1� �0 (�)] cos� (�)
�Rf (4.71)

where

�0 (�) =
h
h
y (�) � f 00 (�)� f 0

2
(�)
i

y2 (�) + [h � f 0 (�)]2
(4.72)

If the Rf term is moved to the left side, the sum on the left is the radius of curvature of
the pitch curve. With this expression for the radius of curvature, the stress analysis can
be carried out as described previously in the context of the �at-faced translating follower
system.

4.5.3 Hollow Pro�les and Undercutting

It might appear that the radius of curvature is a continuous function of the several design
parameters, and for must purposes this is true, but it is not quite entirely so. In reviewing
a proposed design, the engineer must be alert to sign changes in the radius of curvature;
when the sign changes, there is trouble with the design. There are three ways that the
sign of the radius of curvature can change:

1. It can pass continuously from positive values, down to zero. This indicates a cusp
on the cam pro�le, a location where the radius of curvature is zero, resulting in a
corner.

2. It can pass continuously from positive values, down through zero, and on into
a region of negative values. This also indicates a cusp, but worse than that, it
describes a condition called undercutting. When the pro�le is undercut, a portion
of the surface required to support the follower axis along some part of the pitch
curve is removed and no longer available to provide the required support. This is
described in more detail below.

3. The radius of curvature can become large without limit, indicating a �at surface
on the cam pro�le. If this trend continues, the center of curvature jumps discon-
tinuously to the opposite side of the pro�le curve, so that the radius of curvature is
then a very large negative value. The e¤ect of this on the cam pro�le is to indicate
a concave or "hollow" portion of the pro�le. This is completely unacceptable for
a �at-faced follower, and often presents manufacturing di¢ culties where a roller
follower is used.
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Note that, in all three cases, the sign of the radius of curvature changes. In the �rst two
cases, the change is continuous while in the third case the change is discontinuous.

4.5.4 Design Choices

One of the earliest design decisions that must be made is to assign the prime circle radius,
Rb +Rf . It is clear that this in turn involves two individual design choices.

4.5.4.1 Base Circle Radius

The base circle radius controls the overall size of the cam. It is evident that it is desirable
to make the base radius small to conserve material, weight, and space for the cam. On
the other hand, if the base circle radius is too small, there are two possible adverse e¤ects:

1. The pressure angle may become too large;

2. The state of stress in the cam may become unacceptably large.

Increasing the base radius mitigates both of these problems at the expense of greater
cam size.

4.5.4.2 Roller Radius

In addition to commercial availability considerations, the roller radius is constrained by
two considerations:

1. The e¤ect on stresses in both the cam and the roller;

2. The kinematic response at a point of minimum cam pro�le radius of curvature.

The �rst of these is obvious, and has been previously discussed at some length. The
second is more subtle and relates to a kinematically impossible situation known as un-
dercutting, discussed more below.
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4.5.4.3 More About Undercutting

After the base radius and the roller radius have been chosen, the complete pitch curve
follows with the addition of the displacement curve contributions. This means that
the path of the trace point, the rotation axis of the roller follower, is fully de�ned. The
question remains, "Will the cam surface correctly support the follower at every location?"

Figure 4.13: Undercutting Related to Pitch Curve Minimum Radius of Curvature and
Roller Follower Radius

Figure 4.13 addresses this question for a particular pitch curve where the minimum radius
of curvature for the pitch curve, �p�min; is identi�ed. Three potential roller followers are
shown for this pitch curve. For the smallest roller radius, Rf < �p�min, the follower
smoothly travels the pitch curve across the top of the �gure on cam pro�le #1. For the
intermediate follower size, Rf < �p�min, the follower is operating on cam pro�le #2 that
comes to a point at the top, point D. It is evident that this is not acceptable and will
result in very high stresses and rapid wear at that point. The situation is even worse for
the largest follower, Rf > �p�min. If the follower is thought of as approaching the tip
from the right side, it functions normally until it reaches point A where the cam pro�le
is pointed. If the cam is to follow the prescribed pitch curve, it must continue on up to
point B, but there is no pro�le surface to support the follower between A and B ; it is cut
away in the undercutting process. For this impossible motion to continue, the support
point must jump from B to C, again a motion with no supporting surface, and then
�nally the follower must continue on, unsupported from C to A where it again begins
to be supported by the cam surface. The fanciful motion just described cannot actually
happen; the follower does not go where there is no supporting surface. This problem is
the result of removing part of the supporting surface that is later required to support the
follower through part of its motion. This is called undercutting.

Undercutting can also occur in disk cams with �at-faced translating followers. It happens
anywhere the cam pro�le radius of curvature becomes negative by passing continuously
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through zero, resulting in a cusp on the cam pro�le.

4.5.5 Pivoted Flat-Faced Follower Systems

Referring back to the four di¤erent cam-follower system types shown in Figure 4.1, the
type there identi�ed as (b) involving a pivoted �at-faced follower is brie�y considered
here. In Figure 4.14 (a), the cam is shown in its initial position, that is, � = 0 with
the follower in contact with the cam pro�le at the end of the base circle arc and the
beginning of the rise curve. The initial angular position of the follower arm,  o, and the
initial contact location, do, are determined by loop equations written for this position.
Notice that the cam angular reference line, the line where � = 0, is inclined at the angle
 o with respect to the Y -axis.

Figure 4.14: Cam With Pivoted Flat-Faced Follower

In Figure 4.14 (b), the cam is shown rotated counter clockwise through the angle �. This
causes the follower motion  (�) according to whatever displacement function is speci�ed
for the cam, so that

 (�) =  o + h � f (�) (4.73)
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The contact location, point P , is de�ned by the polar coordinates (R; �) as done for the
previous cases, and the entire analysis proceeds along similar lines. It is not developed
in any further detail here.

4.5.6 Pivoted Roller Follower Systems

Again, referring back to Figure 4.1, the �nal cam follower type shown there is (d), the
disk cam with a pivoted roller follower that is brie�y described here. The system is
shown in Figure 4.15 (a) in the initial position, such that � = 0 and the roller follower
contacts the cam pro�le at the transition between the base circle and the rise curve. In
this position, the angular position of the follower is  o and the trace point (the roller
follower axis) is along the line OM extended. Loop equations written for this position
enable the determination of  o and �; the orientation the cam angular reference line.

Figure 4.15: Cam With Pivoted Roller Follower

In Figure 4.15 (b), the cam is rotated through the positive angle �; and the roller contacts
the pro�le at point P with polar coordinates (R; �). The response angle is  (�) ; again
given by equation (4.73). The angle � describes the orientation of the line of contact, and
as such, it plays a role similar to that of the pressure angle for a cam with a translating
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follower. The angle � is shown in two di¤erent locations in the �gure, both signi�cant.
The details for this case are similar to those presented previously, but are not developed
here.

4.6 Conclusions

The subject of cam system kinematics is a very large topic, extending to many areas of
application. The range of operating speeds involved is immense, ranging from very low
speed timing cam that operates a switch in a washing machine to the high speed cam
in a race car engine operating at many thousands of revolutions per minute, and every
thing in between. Some cams operate at very light loads, such that stresses are not of
concern at all while others operate at very high loads with the corresponding concerns
about stresses and wear.

In some machine types, there is a tendency to move away from cams to use electronic
devices such as solenoid actuators in their place. The main advantage claimed for this
substitution is the ability to change the function easily through electronic control. While
this is no doubt important in some situations, it is very di¢ cult to improve on the
reliability, repeatability, and economy of a well designed cam system. The evidence for
this is the continued popularity of cam systems in a wide variety of applications, and the
vast literature associated with cams and cam systems design.
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Problems

4-1 A cam-follower system is to be designed to have a maximum displacement of 12 mm
occurring over a rise of 122o. The rise curve is to be of the modi�ed trapezoidal form.
(Table 4.1 is useful here.)

(a) What is the maximum velocity of the follower?

(b) What is the maximum acceleration of the follower?

(c) What is the maximum jerk of the follower?

4-2 A cam-follower system uses the modi�ed sine displacement form to accomplish a
return of 8:7 mm over an event of 110o: (Table 4.1 is useful here.)

(a) What is the extreme velocity of the follower? Is it positive or negative?

(b) What is the extreme acceleration of the follower? Is it positive or negative?

(c) What is the extreme jerk of the follower? Is it positive or negative?

4-3 A cam follower system uses a cycloidal rise over an event length of 67o and a modi�ed
trapezoidal return curve over a return event of 52o. The total lift is 15 mm. (Figure 4.4
and Table 4.1 may be useful here.)

(a) What is the maximum absolute velocity of the follower? Is this in the rise or the
return?

(b) What is the maximum absolute acceleration of the follower? Is this in the rise or the
return?

(c) What is the maximum absolute jerk of the follower? Is this in the rise or the return?

4-4 Using the computer code examples of Section 4.2 as models, write computer code to
calculate displacement, velocity, acceleration, and jerk over a full cam revolution involving
rise, dwell, return, and low dwell. Provide for entering the maximum lift and the four
event lengths. Allow provisions to specify either cycloidal or 3-4-5 polynomial curves for
either the rise or the return curves.

4-5 Extend the computer code developed in problem 4-4 to include modi�ed sine dis-
placement curves.

4-6 Extend the computer code developed in problem 4-4 to include modi�ed trapezoidal
displacement curves.
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4-7 Extend the computer code developed in problem 4-4 to include 4-5-6-7 polynomial
displacement curves.

4-8 Extend the computer code of problem 4-4 to allow for a �at-faced translating follower
employed with the cam. As a test case, consider a cam that has a rise of 10 mm occurring
over an initial rise of 132o and a return over 122o beginning at � = 210o. The rise is
according to the 3-4-5 polynomial, while the return is cycloidal.

(a) Have the computer code calculate the minimum acceptable face length;

(b) Have the computer code calculate and plot the actual cam pro�le;

(c) Have the computer code calculate the pro�le radius of curvature at all points and
identify the minimum and maximum values;

(d) Calculate and plot all of the functions for the test case cam system. (Make normalized
plots such that the extreme value on each curve is 1:0.)

(e) Iterate to �nd the smallest base radius for which the radius of curvature is always
greater than 60 mm.

4-9 Extend the computer code of problem 4-4 to allow for a radial roller follower operat-
ing with the cam. Consider a follower radius of 9 mm, and the same motion speci�cation
as the test case of problem 4-8.

(a) Have the computer code calculate the pressure angle for all positions;

(b) Have the computer code plot the cam pro�le;

(c) Have the computer code calculate the pro�le radius of curvature at all points and
identify the minimum and maximum values;

(d) Calculate and plot all of the functions for the test case cam system. (Make normalized
plots such that the extreme value on each curve is 1:0.)

(e) Iterate to �nd the smallest base radius for which the radius of curvature is always
greater than 60 mm.
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Gears

5.1 Introduction

The transmission of power from one rotating shaft to another, often with a change in
the speed of rotation, is frequently accomplished with gears. Gears are found in a wide
variety of everyday items such as alarm clocks, kitchen mixers, automobiles, o¢ ce copiers,
and electric drills. Gears are also used in agricultural and industrial equipment such as
lathes, winches, tractors, harvesters, and printing presses. Certainly gears are among the
most commonly used machine elements.

If two circular disks are pressed together in edge-to-edge contact, it is possible to transmit
rotation from the �rst disk to the second. Friction between the two contacts acts to
transmit torque from one disk to the other; such disks are called friction wheels, and
are actually used in a few applications. As long as the disks roll without slipping, a
de�nite angular position relation is maintained between the two disks. If the torque
required exceeds the friction capacity of the contact, the disks slip. When slip happens,
the positional relation between the two disks is changed, and the required torque is not
met. To prevent slipping, the contact force can be increased, resulting in an increase in
the friction capacity of the contact. This is done, however, at the expense of increased
bearing loads, bearing friction, stresses and de�ection in the shafting, and stresses within
the disks.

A better way to prevent slippage is to increase the coe¢ cient of friction with a more
rough surface on the disk edges. A rougher surface involves larger surface irregularities
that resist shear when they are in contact; this more e¤ectively prevents slipping. The
extreme extension of this idea is the use of teeth cut on the edges of the two disks, in
which case the disks are called gears.
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Teeth cut straight across the edge of the disk, in a direction parallel to the axis of rotation,
are called spur gears. Alternatively, the teeth may be cut along a helix generated around
the axis of rotation to produce what is called a helical gear. Because of their helical form,
helical gears tend to exert an axial force upon the shaft carrying the gear when operated
under load. This requires the use of a thrust bearing on the shaft, or perhaps the use
of what is called a double helical gear, that is, a gear tooth formed with two helices of
opposite senses. This is equivalent to two single helical gears of opposite sense, mounted
back to back, and the axial force on the shaft is cancelled.

There are many other variations on the idea of a gear, such as bevel gears that transmit
power between two shafts that are not parallel. In the case of bevel gears, the teeth
are cut on the surface of a cone, and the gear pair act like two cones in rolling contact.
Various other gear types include skew gears, hypoid gears, and worm gears. For the
purposes of this chapter, the discussion is limited to simple spur gears. For information
on other types, the reader may wish to consider the references at the end of the chapter
or the many articles and videos available on the Internet.

5.2 Velocity Ratio

Gear never function alone; they are always found in pairs. (The one exception to this is
the case of a rack and pinion, but the rack is simply a gear with an in�nite radius.) The
ratio of the angular velocity of one gear to that of the second is called the velocity ratio.
This is a parameter of fundamental importance. For satisfactory operation, it is essential
that this ratio be absolutely constant, not only on the average but at every instant. In
order to better appreciate this, consider a situation in which the average ratio is constant
but the instantaneous value is variable.

5.2.1 Nonconstant Velocity Ratio Example

Figure 5.1 shows a medieval lantern and spoke gear set consisting of M1 radial spokes on
the spoked gear andM2 pins parallel to the axis of rotation for the lantern gear. Gearing
of this sort appeared in medieval Europe in grain mills, water pumping machinery, and
various other early machines. They were usually made entirely of wood and did not
require any sophisticated machining in their construction.

Referring to Figure 5.2, the loop equations are

R1 cos � + (R2 + w) sin + s cos � C = 0 (5.1)

R1 sin � + (R2 + w) cos � s sin = 0 (5.2)
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Figure 5.1: Medieval Lantern and Spoked Gear in Mesh

Figure 5.2: Schematic Diagram for Lantern and Spoke Gear Pair

These relations apply over a particular angular interval, �1 � � � � during the engage-
ment of a single pin and spoke pair with a corresponding range  1 �  �  2. The
dimensions R1; R2; w; so; and C are presumed known, and the loop equations are solv-
able for  (Greek letter psi) and s as functions of �. The velocity coe¢ cient relations
result from di¤erentiating the position loop equations with respect to � in the usual fash-
ion. Both the position solution  (�) and the velocity coe¢ cient K (�) are shown in
Figure 5.3. It is evident from the �gure that the velocity coe¢ cient is not constant at
all, but rather varies through the duration of the engagement. These curves apply for a
single tooth pair until such time as another pair begin to engage, causing the �rst pair
to disengage.

The key point here is the variability of the velocity coe¢ cient, and with it, the ratio of
angular velocities, _ = _�. If the input speed, _� is constant, the average value of _ taken
over a full revolution is constant, but the instantaneous value is not constant at all. The
reader may well ask, "What di¤erence does it make if the velocity ratio varies?" Suppose
that the input speed is held exactly constant, perhaps through the use of a very large
�ywheel. The output gear is connected though a shaft of �nite sti¤ness to a driven
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Figure 5.3: Position and Velocity Coe¢ cient Curves for Lantern and Spoke Gear Pair

machine with substantial mass moment of inertia. As the angular velocity of the output
gear varies, the shaft will be alternately twisted and relaxed in a cyclic manner as the
shaft attempts to cause the driven machine to follow the speed variations of the output
gear. The alternating torque in the shaft excites torsional vibrations in the entire system,
and causes fatigue damage to the shaft. The result is noisy operation, vibrations in the
structure, and increased wear on the gears and the bearings. For crude, low-speed, low-
torque machinery this may be tolerable, but for modern high speed, high power machines
it is totally unacceptable.

5.2.2 Condition for Constant Velocity Ratio

It is necessary to establish the condition for a constant velocity ratio in a gear pair since
it is evidently of great importance. In Figure 5.4, two cams are shown, representing teeth
on two gears. The two cams rotate about �xed pivots, C1 and C2; separated by the center
distance C: Gear #1 is the driver, and gear #2 is driven.

It is important to focus on the point of contact between the two cams; no other part
of the cam geometry matters at this instant. The point of contact is designated as H.
The line N1 �N2 is normal to the two cam surfaces at the point of contact, and the line
T1 � T2 is tangent at that same point. The instantaneous angular velocities of the two
cams are _� and _ , the velocities are perpendicular to the radii from their respective �xed
pivots; these velocities are shown as V1 and V2 in the �gure.

The normal line, N1 � N2; s is often called the line of action or the line of contact. As
discussed previously with regard to cams, the contacting surfaces must never be allowed
to separate or to overlap. For this condition to be satis�ed, it is necessary that the
velocity components along the line of contact be exactly the same for both bodies. This
requires that the velocity component V1k = V2k, where parallel is understood to mean
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Figure 5.4: Two Cams Representing the Teeth of Two Gears

parallel to the line of action. According to the theorem developed in Section 4.3, the
components of V1 and V2 along the line of action are

V1k = _�[C1Q1 (5.3)

V2k = _ [C2Q2 (5.4)

Since proper operation requires that these two be equal, the velocity ratio is then

_ = _� =
[C1Q1
[C2Q2

(5.5)

The intersection of the line of contact with the line of centers de�nes a point P , called
the pitch point (this is a very important de�nition!). The two triangles C1Q1P and
C2Q2P are geometrically similar. Recall a theorem from plane geometry to the e¤ect
that corresponding parts of similar triangles are proportional to each other. Consequently,
the velocity ratio is

_ = _� =
[C1P
[C2P

(5.6)

If the velocity ratio is to remain constant, the ratio[C1P=[C2P must be constant, so that
the pitch point remains �xed. This is often stated as the Fundamental Law of Gearing:

For a constant angular velocity ratio, the pitch point must remain stationary.
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5.2.3 Sliding Velocity at the Point of Contact

Figure 5.4 also provides information regarding the sliding velocity at the point of contact.
The sliding velocity is signi�cant in terms of friction and wear on gear teeth. For each
cam in Figure 5.4, the magnitude of the velocity at the point of contact is easily written
in terms of the radius to the contact location and the angular velocity of the cam. With
that, and the Pythagorean theorem, the magnitude of the velocity components normal
to the line of action can be written:

V 2
1? = jV1j2 � V 2

1k =
�
[C1H

2

1 �[C1Q
2

1

�
_�
2
=[Q1H

2

1
_�
2

V1? = [Q1H1
_� (5.7)

and similarly
V2? =[Q2H2

_ (5.8)

The velocity components normal to the line of action are in opposite directions, so the
total sliding velocity is their sum. Taking all lengths as positive and adding the velocity
components leads to the �nal result for the sliding velocity after some algebra,

Vs = V1? + V2? =dPH � _� + _ 
�

(5.9)

The result is that the sliding velocity is proportional to the sum of the gear speeds and
the distance from the pitch point to the contact.

5.3 Conjugate Pro�les

In the previous section, the Fundamental Law of Gearing was established which states
that a constant angular velocity ratio requires that the pitch point be stationary. In
order for the pitch point to be stationary, the line of action (the line tangent to both
base circles) must intersect the line of centers continuously at the same location while
the point of contact moves through the tooth engagement. If the tooth pro�les are such
that the pitch point remains stationary, the two pro�les are said to be conjugate to each
other. Thus conjugate gear tooth pro�les satisfy the Fundamental Law of Gearing, and
gears with conjugate tooth pro�les have a constant velocity ratio. In the lantern and
spoke gear example of Section 5.2,the tooth forms are not conjugate, the pitch point is
not stationary, and the velocity ratio for the pair is not constant.

Notice that the property of being conjugate (or non-conjugate) is a property of a pair of
tooth forms, and not a property of either tooth form individually. For any given tooth
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form, it is possible, in principle, to determine a second tooth form conjugate to the �rst.
A procedure for this is given by Beggs [1] : In practice, the required conjugate form for
the second gear often cannot be realized physically because it requires material bodies
to pass through each other.

It is established that (1) conjugate tooth pro�les are desirable, and (2) that a conjugate
form can, in principle, be developed for any given tooth form. This would seem to suggest
that there would be a great variety of tooth forms in use, but in fact this is not the case.
The vast majority of gears in use today employ the involute tooth pro�le, although there
are a few other forms such as cycloidal teeth (which are conjugate) and Novikov (which
are non-conjugate) that are used in special circumstances. Only involute tooth forms
are considered further in this discussion. Before discussing the involute gear tooth, it is
necessary to develop the properties of the involute.

5.4 Properties of the Involute

The involute of a circle is the path traced by the tip of a taut string unwinding from the
circle. In Figure 5.5, the string is initially wound on a circle called the base circle, with
the free end at the intersection of the base circle and the vertical axis. The radius of the
base circle is denoted as Rb and called the base radius. The string is inextensible and must
remain taut, so the initial motion is radially outward from the base circle. The situation
shown in Figure 5.5 is when the string has been unwound through approximately 40o

around the base circle. The broken line at the top shows the further development that
occurs when more of the string is unwound. The length of the straight segment of the
string is denoted as P and is the instantaneous radius of curvature for the involute at
that point.

The polar coordinates for the free end of the string are (R; �) ; the radius and the polar
angle to the current location on the involute curve. The polar angle to the point where
the string is tangent to the base circle is the sum of two angles � + �, where the second
angle, �, is called the �ank angle. Note that the �ank angle is identi�ed a second time
in Figure 5.5 as the angle between the tangent to the involute and the radial line to the
point on the involute; it is the same angle in both cases.

The radius of curvature, P , is expressible in two forms, once in terms of the unwound
arc length, and again in terms of the trigonometry of a right triangle:

P = Rb (�+B) = Rb tan� (5.10)

This is solvable for the angle � thus:

� = tan�� � = inv (�) (5.11)
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Figure 5.5: Geometry of the Involute Curve

where inv (�) denotes the involute function, de�ned as inv (�) = tan�� � . The radius
to the current point on the involute is expressible in terms of � through a simple right
triangle relation,

R = Rb= cos� (5.12)

Thus the polar coordinates for every point on the involute, (R; �) are readily written in
terms of the �ank angle parameter �.

If a point on the involute is speci�ed, either by giving R or �, the other can be deter-
mined. If the value of R is speci�ed, then the �ank angle is readily determined from
Equation (5.12) and from there, the polar angle � is determined from Equation (5.11).
If the value of � is given, the solution is more involved. Equation (5.11) must be solved
numerically for � based on the given value for �: With � determined numerically, the
radius is quickly evaluated from equation (5.12). The necessary numerical solution is eas-
ily accomplished with Newton�s Method (the Newton-Raphson with only one unknown).
Typically solutions with a residual of magnitude less that 10�6 are obtained in no more
than six iterations.

When the involute is used as a gear tooth form, it is common practice to use two involutes
facing in opposite directions in order to create a tooth form that will function correctly
in either direction. Figure 5.6 shows two involute pro�les thus arranged, resulting in a
pointed tooth form. The length along a circular arc from one involute to the other is
called the circular thickness, and it obviously depends upon the radius where it is mea-
sured, T (R), as shown. The �gure includes a notation Pitch Circle, a circular thickness
designated as Tp, and a radius Rp. All of these last are related to the pitch point, but it
is premature to get into those details here; this will all make complete sense after reading
the next section. For the present, consider Rp as simply a particular radius, and Tp is
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the circular thickness associated with Rp:

Figure 5.6: Determination of Gear Tooth Circular Thickness

It is often necessary to determine the circular thickness at a speci�ed radius, T (R), given
Rb; Rp; Tp: and R. The �rst three are the primary parameters of the gear tooth form,
and the last is the radius where the circular thickness is required. The �ank angle at R
is � (R) and is determined from the right triangle relation

� (R) = cos�1 (Rb=R) (5.13)

With � (R) known, the polar angle � (R) is determined by evaluating the involute function

� (R) = inv [� (R)] = tan [� (R)]� � (R) (5.14)

This same process is also applied at the pitch circle, to give

�p = cos�1 (Rb=Rp) (5.15)

�p = tan (�p)� �p (5.16)

Now looking at the arc length di¤erence between 1
2
T (R) and 1

2
Tp; the following relation

is evident:
Tp
2Rp

� T (R)

2R
= � (R)� �p (5.17)

This last can be solved for the required circular thickness, T (R)

T (R) = 2R

�
Tp
2Rp

+ �p � � (R)

�
= 2R

�
Tp
2Rp

+ inv (�p)� inv [� (R)]

�
(5.18)
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Conversely, if a particular value is speci�ed for T (R), equation (5.18) can be solved
numerically for R by Newton�s method.

5.5 Involute As A Gear Tooth

To understand the functioning of involute gear teeth, it is useful to consider the process of
winding a thin, �exible but inextensible string or tape from one disk or drum to another.
The two disks are mounted on �xed pivots with center distance C as shown in Figure
5.7 (a). The radii of the two disks are Rb1 and Rb2, respectively. The string or tape is
wound partially around each disk, with the unsupported portion of the string lying along
the line of action as shown; the points of tangency are T1 and T2, points that are �xed
in space. A particular point on the string is marked s, and initially this point coincides
with T1 as shown in Figure 5.7 (a). As the disk on the left rotates clockwise, point s
moves down and to the right along the line of action as shown in Figure 5.7 (b); note
that the original location on the left disk is marked s0. As s lifts o¤ the left disk, it
traces an involute as described in Section 5.4. At the same time that s is leaving the left
disk, it is also approaching the surface of the right disk, following an involute generated
from the right disk. The point that started at s0 moves to s on the line of action while
approaching the location s00 on the second disk, as shown in Figure 5.7 (c). The short
section of broken line indicates the continuation of each involute curve past the location
of s. Before the point s reached T1; and again after it passes T2, it travels on a circular
path around one of the two disks. In the process just described, the two disks function
as base circles, hence their radii are denoted as Rb1 and Rb2.

Now suppose that the two involute curves are replaced with cams of those shapes, while at
the same time, the string is eliminated. Is the relative motion of the two disks changed
in any way? It should be evident that it is not. The two cams enforce exactly the
same angular relationship between the disks as that imposed by the taut string. For the
process as just described, there are two important observations to be made: (1) the two
cams must be tangent to each other at the point s because s is simultaneously on both
involutes, and (2) as noted in the beginning, the point s travels down the line of action
and where this line crosses the line of centers, there is the pitch point P . The pitch point
is stationary, and therefore the velocity ratio is constant.

But notice that, if there are physical cams controlling the rotation, then there is no need
for the base circles in physical form. The base circles always exist as geometrical concepts,
the basis for the involute curves, but only rarely is there a physical feature identi�able
as a base circle. This is an important observation, because many are inclined to want to
see the base circles; in almost all cases, there is nothing at all to see.

All contact between the gear teeth occurs along the line of action. Recall that, in Figure
5.7, the line of action is the path followed by the point s in transit from one base circle
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Figure 5.7: Involute Tooth Action: Winding a Tape from One Base Circle to Another

to the other, and the gears are always mutually tangent at that point. In the absence
of friction, the contact force is directed along the line of action, a line that has a �xed
orientation. This orientation is described in Figure 5.8 by the angle �; called the actual
pressure angle. Note that � is measured between the line of action and the normal to the
line of centers. For a pair of involute teeth in mesh at the pitch point, the �ank angle at
the contact is equal to the pressure angle; this is also illustrated in Figure 5.8.

As shown in both Figures 5.7 and 5.8, if the gear on the left rotates through an angle
�, the contact point moves along the line of action a distance � �Rb1. At the same time,
the contact point moves toward the gear on the right a distance  � Rb2, and these two
distances must be exactly the same provided contact is maintained. From this, it is
evident that

 =� = _ = _� = Rb1=Rb2 (5.19)

The pitch radius is de�ned as the distance from a base circle center to the pitch point,
and the pitch radii are identi�ed in Figure 5.8 as Rp1 and Rp2. The pitch radius is related
to the base radius by

Rb = Rp cos� (5.20)
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Figure 5.8: De�nition of Actual Pressure Angle and Actual Pitch Radii

Since the pitch radii are proportional to the base radii, the ratio of rotations and the
velocity ratio can be easily written in terms of the pitch radii,

 =� = _ = _� = Rp1=Rp2 (5.21)

All of this suggests that the motion of a pair of involute gears is kinematically exactly
equivalent to that of two friction wheels of radii Rp1 and Rp2. This is an important
observation primarily because it simpli�es thinking the engagement of an involute pair
to simply dealing with a pair of friction disks. This is particularly signi�cant when
considering a train consisting of several gears in sequence.

Figure 5.9: E¤ect of Changing Center Distance

A base circle and the associated base radius are a properties of single gear. Other
properties discussed above are properties of a gear pair, speci�cally:

� Center distance
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� Line of action

� Pitch point (actual)

� Pressure angle (actual)

� Pitch radii (actual)

Figure 5.9 illustrates this point by showing the e¤ect of di¤erent center distances on what
are otherwise the same gear pair. In that �gure, the base circle at left is held �xed while
the right base circle is shifted an amount �C. In this process, (1) the center distance
goes from C to C 0, (2) the line of action is shifted from the broken line to the solid, (3)
the pitch point moves from P to P 0, (4) the pressure angle is increased from � to �0, and
the pitch radii are each increased because of the shifted pitch point.

Despite the change in the pitch radii, the velocity ratio for the gear pair remains constant.
This illustrates an extremely important property of the involute gear tooth. It means
that there is some �exibility in setting the center distances, and that there is no need for
extreme accuracy in locating the gear centers. This last is very important in terms of
ease of manufacturing and costs.

5.6 Internal Gearing

Everything said about the use of the involute as a gear tooth form to this point has been
in terms of external gear teeth, that is, teeth formed on the outer rim of a gear disk. But
what of teeth formed on the inside of a hollow cylinder? Such teeth are an essential part of
what is called planetary gearing, or more technically, epicyclic gearing. In the discussion
above, it is demonstrated that involute gear teeth o¤er major advantages, particularly
constant velocity ratio with a degree of �exibility in the mounting center distance. But
how does this work for the planetary case?

Figure 5.10 shows two base circles (the larger one is only partially shown) in solid lines.
In all of the discussion prior to this point, the base circles have been non-intersecting, but
here they overlap. For one of the gears to be an internal gear, it is essential that the base
circles intersect; this is a major distinction between internal and external gear pairs. As
in the earlier discussion, the line tangent to both base circles is the line of action. Again
as before, the intersection of the line of action with the line of centers is the pitch point,
P , at the far right.

The pressure angle is de�ned exactly as in the previous case, namely the angle between
the normal to the line of centers and the line of action. As before, it is also shown in two
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Figure 5.10: Internal Gear Mesh Geometry

other locations. The pressure angle is computed by

� = cos�1
�
Rb1 �Rb2

C

�
(5.22)

The pitch radii are de�ned as before, the distances from the respective centers to the
pitch point. But notice that, in the case of internal gearing, the sum of the pitch radii
is greater than the center distance, quite di¤erent from the situation of external gearing.
The pitch radii are computed using equation (5.20), exactly as before.

The construction of the involute curves is not shown, but it is done in exactly the same
manner as before, beginning at a point on the base circle and proceeding outward as
the string or tape is unwound from the base circle. The result is that while the external
gear requires a solid surface under, or some might say, inside, the involute, the internal
gear leaves material above, or outside, the involute. The result is that both the internal
and external gear teeth are involutes (de�ned on di¤erent base circles), but the external
tooth presents a convex surface while the internal gear has a concave surface.

5.7 Gear Terminology

Assuming that an involute tooth form is to be used, there is still quite a large vocabulary
required to describe the features of each gear. Note too that, in talking about a single
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gear, it is customary to speak in terms of the nominal properties, which may di¤er
somewhat from the actual properties, as �nally mounted. An example of this is the term
nominal pitch radius. As described above, the actual pitch radius is not de�ned until
the gear pair is engaged and mounted, such that (1) the center distance is �xed, (2), the
line of action de�ned, (3) an actual pitch point exists, thus dividing the center distance
into actual pitch radii. Despite these essential requirements, it is still possible to de�ne
an intended or nominal pitch radius for a gear, that is the pitch radius at which the
individual gear is designed to operate. Whether the gear is actually mounted and used
at the intended center distance is another matter, but there is some particular pitch
radius for which the gear is designed.

Figure 5.11: Gear Terminology

A list of common gear terms follows below, and many of them are illustrated in Figure
5.11.

� Pitch Circle: A circle with the nominal pitch radius; this circle rolls without slip-
ping on the pitch circle of the mating gear when the two are in mesh.

� Addendum: The radial distance from the nominal pitch circle to the outer tip of
the tooth, the top land.

� Dedendum: The radial distance from the nominal pitch circle to the �oor of the
space between the teeth, the bottom land.

� Addendum Circle: A circle passing through the tip of the teeth.

� Dedendum Circle (also called the Root Circle): A circle passing through the bot-
tom land.

� Whole Depth: The sum of the addendum and dedendum dimensions.

� Working Depth: The sum of the addendum dimensions for a pair of gears in mesh.
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� Clearance: The amount by which the dedendum of the gear exceeds the addendum
of the other gear in the mesh.

� Circular Thickness: The arc length between the two sides of a gear tooth, mea-
sured along the pitch circle unless otherwise speci�ed.

� Backlash: The amount that the space width exceeds the circular thickness of the
engaging gear as measured along the pitch circle.

� Circular Pitch: The arc length along the pitch circle between corresponding points
on adjacent teeth; the spatial period of the gear teeth as measured along the pitch
circle equal to the sum of the tooth thickness and the space width.

� Base Pitch: The arc length along the base circle between corresponding points on
adjacent teeth; the spatial period as measured along the base circle. This is also
the distance along the line of action from one tooth to the next on the same gear.

� Spur Gear: A gear with teeth cut straight across the outside of a central disk.

� Internal Gear: A gear with teeth cut on the inside of a hollow circular part; this
is also called a Ring Gear.

� Pinion: The smaller of two gears in a mesh. The larger is simply called the gear.

� Diametral Pitch: The number of teeth per inch of pitch diameter, used with US
Customary units only. The diametral pitch has units of teeth per inch.

� Module: The pitch circle diameter per tooth, used with SI units only. The mod-
ule has units of millimeters (actually millimeters per tooth, but the last is not
expressed).

5.8 Standard Tooth Proportions

Gear tooth proportions are typically stated in terms of two parameters, the nominal
pressure angle and a second parameter to indicate the size of the individual tooth.

Gear application is a continuously evolving art, and as such, standard practice continues
to change over time. Every gear is designed to function at, or near, a speci�ed nominal
pressure angle (recall that the center distance for involute gears can be varied to a degree,
and when this is done, the actual pressure angle deviates from the nominal value). When
the pressure angle is very low, the component of force along the line of action is nearly
normal to the line of centers. This produces relatively low bearing forces, but it requires
long, slender gear teeth that are susceptible to bending fatigue failure. Increasing the
pressure angle causes an increase in bearing loads for the same transmitted power, but
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it gives a thicker tooth form less prone to fatigue failure. The choice is the classic design
trade-o¤ problem.

In the early 20th century, the standard nominal pressure angle was 141
2

o. This choice
is largely abandoned today, with most gears employing �nom = 20

o, although there are
some applications going up as far as 25o. For the purposes of this book, �nom = 20o

is assumed unless stated otherwise. In American terminology, the parameter describing
the size of the gear is the diametral pitch, usually denoted as P and de�ned as the total
number of teeth on the gear divided by the nominal pitch circle diameter. In SI usage,
the size parameter is the module, denoted as m, and de�ned as the pitch circle diameter,
expressed in millimeters, divided by the number of teeth on the gear.

From the de�nition of the module, that it is conceptually the inverse of the diametral
pitch. On one level, it may be said that this is the only di¤erence, but on a di¤erent level,
there are signi�cant di¤erences. The di¤erences are particularly apparent when preferred
values are considered (preferred values are those commonly speci�ed choices for which
standard manufacturing tooling is readily available). In the US Customary system, the
preferred diametral pitch values for coarse pitch gears are: P = 1; 2; 4; 6; 8; 10; 12; 14;
16; and 18 teeth per inch of (nominal) pitch diameter. Typical preferred modules are
m = 0:8; 1, 1:25, 1:5, 2, 2:5, 3, 4, 5, 6, 8, 10, 12, 15, 20, ... mm. For a speci�ed number
of teeth, when either the diametral pitch (P ) or the module (m) is chosen, the nominal
pitch diameter of the gear is de�ned. For example, a 19 tooth gear with a diametral
pitch P = 6, the nominal pitch diameter is Dp = 19=6 = 3:1667 inches; similarly, for a 27
tooth gear with a module m = 4 mm, the nominal pitch diameter is Dp = 27 � 4 = 108:0
mm. These nominal values are used for design calculations particularly to de�ne the
base radius, but the actual values of pitch radius and pressure angle are determined only
when a pair of gears are mounted on �xed centers. Typical standard dimensions for spur
gear teeth are given in Table 5.1.

In some situations, the dedendum circle is outside the base circle. When this happens,
the tooth pro�le is an involute curve all the way to the �llet, at which point the �llet
blends it into the dedendum surface. The other case is that the dedendum circle is inside
the base circle, in which case there is a portion of the �ank that cannot be an involute
curve because the involute is not de�ned inside the base circle. The exact form taken by
this non-involute surface is largely determined by the particular method used to cut the
teeth, but it is common practice to draw this part as simply a radial line from the top of
the �llet up to the base circle. As long as there is no contact inside the base circle, the
main concern is with regard to the strength of the tooth and the stresses in that area.
This is more discussion about this topic in the next section.
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Table 5.1 Standard Spur Gear Teeth

Item US Customary SI

P < 20

Pressure Angle � = 20o � = 20o

Number of Teeth N N

Pitch Radius (Nominal) Rp = N= (2P ) Rp = m �N=2

Base Radius Rb = Rp cos� Rb = Rp cos�

Addendum 1=P 1 �m

Dedendum 1:25=P 1:25 �m

Clearance 0:25=P 0:25 �m

Working Depth 2=P 2 �m

Whole Depth 2:25 � P 2:25�;

Circular Thickness �= (2P ) 1:5708 �m

5.9 Contact Ratio

Consider a gear and pinion engaged as shown in Figure 5.12. All contact between gear
teeth must occur in the space between the two addendum circles and at a point on the
line of action. Thus �rst contact happens when the pinion tooth cuts the line of action at
the point designated as a. Contact continues down the line of action, through the pitch
point, and on to the point b where the gear tooth cuts the line of action. The distance
from point a to point b is called the length of action, Lab. The angle turned while contact
moves from a to the pitch point is called the arc of approach; the angle turned from
the pitch point until contact is broken is called the arc of recess. During the approach,
the tooth engagement is progressively deeper; the depth of engagement reduces through
recess to the point where engagement is broken at b.

For smooth operation, it is vital that a second pair of teeth engage before the �rst pair
lose contact. This requires that in many positions, there are two or more pairs of teeth in
contact while in some positions there will be fewer pairs carrying the load. The ratio of
the length of action to the distance between adjacent tooth contact points is the average
number of teeth engaged; this ratio is called the contact ratio. The contact ratio is an
important measure of the quality of a gear mesh design; a higher contact ratio indicates
a better design. In all cases, the contact ratio must be greater than 1:0; with minimum
values in the range 1:2 to 1:4.
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Figure 5.12: Contact Ratio and Interference Considerations

As shown in Figure 5.12, the line of action is de�ned as tangent to the two base circles at
T1 and T2. Where the line of action intersects the line of centers de�nes the pitch point,
P . The following notations apply:

C = center distance

Rap = addendum radius of the pinion

Rbp = base radius of the pinion

Rag = addendum radius of the gear

Rbg = base radius of the gear

� = actual pressure angle

With these notations, the length of action is

Lab = caT 2 + cT1b�dT1T
=
q
R2ap �R2bp +

q
R2ag �R2bg � C sin� (5.23)
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where

� = sin�1
�
Rbp +Rbg

C

�
(5.24)

Now consider the situation where two pinion teeth are simultaneously in contact with two
gear teeth. Both points of contact are at locations on the line of action. The separation of
the contact points is equal to the base pitch, the arc length along the base circle between
consecutive tooth involutes and denoted as Pb. It is evident that the essential feature
required for two pinion teeth to be in simultaneous contact with two gear teeth is that
the base pitch must be the same for both the gear and the pinion; if this is not true,
the teeth will not be properly spaced to achieve simultaneous meshing. For a gear (or
pinion) with N teeth and base radius Rb, the base pitch is

Pb = 2�Rb=N (5.25)

The contact ratio, Mc, is then

Mc = Lab=Pb (5.26)

5.10 Interference & Undercutting

For the gear pair in Figure 5.12, consider increasing the addendum radius of the gear
while holding all other parameters �xed. As Rag increases, it is evident that point b will
soon reach the base circle of the pinion at T2; any further increase creates the potential
for non-involute contact inside the pinion base circle. Contact on a non-involute surface
is called interference. In the same way, if the pinion addendum were increased, there is
the possibility of interference at the base circle of the gear as a approaches T1. To avoid
interference, the addendum radii must be less than their critical values:

Rag�Crit =
q
R2bg + C2 sin2 � (5.27)

Rap�Crit =
q
R2bp + C2 sin2 � (5.28)

In the manufacturing of gears, some methods employ a cutter shaped like a pinion that
moves parallel to the gear axis of rotation. If there is interference between the gear being
cut and the cutter, the cutter simply removes the interfering material from the �ank of
the gear. This is called undercutting, and it can seriously weakening the gear tooth. It
is obvious that undercutting must be avoided in good gear pair design.
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5.11 Simple and Compound Gear Trains

The remainder of this chapter addresses combinations of gears running together to accom-
plish useful motions. Such combinations are called gear trains. The essential requirement
for a pair gears to run together is that they have the same circular pitch, or equivalently,
that their base pitch values be the same. Recall that the circular pitch is the arc length,
measured at the pitch radius, from one tooth pro�le to the next. If two gears have the
same circular pitch, then the teeth on each will arrive at the point of engagement at the
same time. It is not di¢ cult to show that this equivalent to requiring that they have the
same diametral pitch or the same module, depending on whether USC or SI units are
being used.

Consider several gears running together and supported on bearings in such a way that
they are all in the same plane. This is called a simple gear train, and an example is
shown in Figure 5.13. All of the gears in a simple train must have the same diametral
pitch or the same module.

Figure 5.13: Simple Gear Train

As shown in Figure 5.13, the gear are represented by their pitch circles, drawn tangent
to each other at the pitch point on each line of centers. Conjugate action assures that
the pitch circles roll on each other without slipping, thus allowing each actual gear to be
conceptually replaced by a friction wheel. Denote the pitch radii as R1p; R2p; R3p; and
R4p; respectively, while the rotations are �1; �2; �3, and �4, taken positive in alternating
senses. Thus the rolling equations are

�2R2p = �1R1p at the 1� 2 mesh (5.29)

�3R3p = �2R2p at the 2� 3 mesh (5.30)

�4R4p = �3R3p at the 3� 4 mesh (5.31)

If �1 is understood as an "input" and �4 as an "output," then the ratio of output to input
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is called the train ratio, �4=�1,

�4 = (R3p=R4p) �3

= (R3p=R4p) (R2p=R3p) �2

= (R3p=R4p) (R2p=R3p) (R1p=R2p) �1

�4=�1 = R1p=R4p = N1=N4 (5.32)

where N1 is the number of teeth on the input gear, and N4 is the number of teeth on
the output gear. Recall that the pitch radii are proportional to the number of teeth on
the gear. This shows that only the input and output gears a¤ect the train ratio. The
other gears have no e¤ect on the train ratio; they are called idlers for this reason. Idlers
simply �ll the space between the input and output gears, and in some cases they serve
to reverse the sense of rotation. If there is also driven machinery attached to the shafts
of gears 2 and 3, then they become "output gears" and there is a train ratio for each of
them:

�2=�1 = R1p=R2p = N1=N2 (5.33)

�3=�1 = R1p=R3p = N1=N3 (5.34)

Where very large train ratios are required, simple gear trains are not practical because
of the very large size required for one or more of the gears. A system called a compound
gear train is usually much more compact. A typical compound train is shown in Figure
5.14.

Figure 5.14: Compound Gear Train

The thing that makes this a compound train are the use of compound gears 2-3 and 4-5.
Looking at the top view, it is evident that each of these is actually two gears on a common
shaft, locked together so that they have the same rotation. While bearing in mind that
any of the shafts may be considered either an "input" or an "output," for the purposes
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of illustration, consider gear 1 as the input and gear 6 as the output. It is required to
�nd the train ratio, �6=�1, where all rotations are taken positive as they naturally occur
in the train. The rolling constraints are

�1R1p = �23R2p at the 1� 2 mesh (5.35)

�23R3 = �45R4p at the 3� 4 mesh (5.36)

�45R5p = �6R6p at the 5� 6 mesh (5.37)

After eliminating all the intermediate rotations, the �nal result in terms of the tooth
numbers is

�6=�1 = (R5p=R6p) (R3p=R4p) (R1p=R2p)

=
N5
N6

� N3
N4

� N1
N2

(5.38)

The replacement of the pitch radius ratios with the tooth number ratio is correct because
in each case, the particular gears in each ratio must have the same diametral pitch or
the same module.

In certain circumstances, it may be required that the input and output shafts be colinear
(aligned); such a train is called a reverted compound train. For a two stage reverted
train, that is one involving four gears, the center distances must therefore be exactly the
same for both meshes, as shown in Figure 5.15. If the ratio is the same in each mesh,
there is no di¢ culty; if di¤erent ratios are required in the two meshes, it may not be
possible to accomplish the design with standard gears. Allowing the center distance to
increase provides a degree of design �exibility, at the expense of increased pressure angle
and decreased contact ratio.

Figure 5.15: Reverted Compound Train
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5.12 Tooth Numbers

The role of tooth numbers in determining a train ratio is evident in the developments
above. It is useful therefore to say a little about how they are chosen, beginning with a
simple example. Consider a single pair of spur gears with tooth numbers N1 = 30 and
N2 = 60; for which the train ratio is 2 : _1. Suppose that a particular tooth on the �rst
gear has a �aw, an irregularity that will increase wear and noise. Such a �aw might be
a material defect, a manufacturing error, or damage sustained in operation. This tooth
comes into repeated contact with exactly the same two teeth on the second gear, no
matter how many revolutions the gears make. The defect works repeatedly to damage
these same two teeth. Clearly, it would be advantageous if the damage from that �awed
tooth could be spread to all the teeth of the second gear, rather than being concentrated
on just two.

To extend this discussion, two de�nitions are required:

� A prime number is an integer divisible only by itself and one. This means that it
has no other factors. Examples of prime numbers include 1, 2, 3, 5, 7, 11, 13, 17,
19, ...

� Two integers are said to be relatively prime if they have no common factors. For
example, 27 = 33 and 32 = 25 are relatively prime, even though neither of them is
a prime number. Further, 27 and 33 = 3 � 11 are not relatively prime because of
the common factor 3.

The problem with the initial example involving two gears with N1 = 30 and N2 = 60
is called a common factor error, a design error to be avoided if at all possible. The
problem is avoided provided the tooth numbers in each gear mesh are relatively prime.
Note that this does not require that either of them be a prime number, but only that
they be relatively prime. It is true, however, that a prime number is relatively prime to
all integers other than itself.

The development of equations (5.32) and (5.38) show that in each case, the train ratio
can be written as

Train

Ratio
=
Product of driving gear tooth numbers
Product of driven gear tooth numbers

(5.39)

In equation (5.38), the tooth numbers are grouped by meshes, so that each fraction
represents a particular mesh. Equation (5.39) indicates that the same train ratio can
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be achieved in other ways, by rearranging the factors in either the numerator or the
denominator, with the provision that at every mesh, the same diametral pitch or same
module is used for both gears.

In order to avoid interference and undercutting, no gear may have too few teeth. For
coarse pitch gears with a diametral pitch less than 20, no pinion should have fewer than
18 teeth. In the rearrangement suggested in the previous paragraph, it is possible that
a particular gear may be left with too few teeth. In this case, it is possible to introduce
a common factor in both the numerator and the denominator to increase that tooth
number. To do this and still avoid the common factor error, the common factor must be
placed a di¤erent meshes.

In the design of a gear train, one of the questions to be asked is whether the train
ratio is required to be exactly a particular value, or only near that stated value. In
many machinery applications, it makes no di¤erence whether the output shaft is exactly
1435 rpm, or it could equally well be only 1432 rpm. There are other more exacting
applications, such as clockwork, where the ratio between the second hand to the minute
hand must be exactly 60 : 1. If a loose approximation to a speci�ed train ratio is
satisfactory, then a few moments creative thought will usually enable the designer to
come up with a workable approximation. If an exact train ratio is required, the problem
is substantially more di¢ cult. The development of very close approximations to speci�ed
train ratios is a well developed art in the �eld of horology (clock and timing mechanisms).
This was developed at some length in the �rst edition of this book, and the interested
reader is referred there for further information.

5.13 Planetary Gear Trains

All of the gear trains discussed in the preceding involve gear shaft centerlines that are
stationary in space. There is a second type of train called a planetary (or epicyclic)
gear train for which some of the gear centerlines are not stationary. Typical simple and
compound planetary trains are shown in Figures 5.16 and 5.17. The name planetary
arises from the rather obvious analogy with the solar system. The central gear is usually
called the sun gear, and the gears that circle around the sun are called planets. However,
there is no astronomical analog for the ring gear, and internal gear that engages outside
of the planets. The planet shafts are all supported on what is called the planet carrier,
also called the spider or arm. The alternative name for the entire assembly, epicyclic
train, comes from the fact that the planet gear teeth trace epicycloidal curves.

On the left side of both Figures 5.16 and 5.17, there is a pictorial view of the assembly,
seen looking in the axial direction. The right side of each �gure shows a schematic section
diagram for the same system in each case. In the schematic, the planets are always rotated
into the picture plane. Even when there are three or more planets, the schematic view
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Figure 5.16: Simple Planetary Train

Figure 5.17: Compound Planetary Train

never shows more than two in the picture plane. The gear shafts appear simply as lines
in the schematic, often representing concentric tubular shafts. The schematic is always
symmetric about the horizontal centerline, so it is common practice to show only the top
half.

Notice that there are three shafts coming out of the planetary train, one for each of the
sun gear, the planet carrier, and the ring gear. In some cases, one of the shafts is attached
to the frame, so that only two shafts need to be actually brought out (it is easy to see
how the ring gear could be attached to the frame). If all three are allowed to rotate,
then at least two of the shafts must be coaxial. If the planet carrier is �xed to the frame,
then the assembly is no di¤erent from the trains considered in previous sections because
this means that all the centerlines are �xed in space. The planets are not directly driven
from the outside.

With three connecting shafts, it is evident that the planetary train must have two assigned
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rotations in order to determine the third; this is a two degree of freedom mechanism. If
any of the shafts is �xed and cannot rotate, that reduces the number of degrees of freedom
by one, and the result is then a single degree of freedom mechanism.

Figure 5.18: Schematic Half Section of a Simple Planetary Train

Consider the simple planetary train shown in Figure 5.18 where the three concentric
shafts are connected to the sun, the planet carrier, and the ring gear. Pitch radii for
all the gears are indicated, along with the planet carrier radius. Let �s, �c, �p, and �r
denote the rotations of the sun, the planet carrier, the planets, and the ring gear, all
measured positive in the same direction relative to a stationary reference frame. To be
speci�c, assume that a positive rotation of any component moves the upper edge out of
the picture plane and toward the viewer. There are two rolling constraint equations to
be written, one for each gear mesh in the schematic.

Rs�s = Rc�c �Rp�p Sun-Planet (5.40)

Rr�r = Rc�c +Rp�p Planet-Ring (5.41)

When the two constraint equations are added, the planet carrier rotation is eliminated
with the result

Rs�s +Rr�r = 2Rc�c (5.42)

If any two of the rotations are speci�ed, this expression is readily solved to give the third.

In many cases, the pitch radii are not known, but the tooth numbers are speci�ed. Notice
that the planet carrier radius must be equal to the simple average of the sun and ring
pitch radii. Because the schematic in Figure 5.18 is a simple train, all of the gears must
use the same diametral pitch or the same module. In such a case, the pitch radii are
all proportional to the tooth numbers, so the proportionalities are substituted and the
common factors removed to give

Ns�s +Nr�r = (Ns +Nr) �c (5.43)
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where the Ns are the tooth numbers. If any component is �xed, the rotation for that
component is zero and that term drops from the equation. This equation can be di¤er-
entiated with respect to time to relate the angular velocities and accelerations.

Figure 5.19: Schematic Half Section of a Compound Planetary Train

For the compound planetary train shown in Figure 5.19, the analysis is only slightly more
involved. The rolling constraint equations are almost identical to those written for the
previous case:

Rs�s = Rc�c �Rp1�p Sun-Planet (5.44)

Rr�r = Rc�c +Rp2�p Planet-Ring (5.45)

Elimination of the planet rotation is more complicated because the two planets have
di¤erent pitch radii. When the algebra is carried out, the result is

Rp2Rs�s +Rp1Rr�r = Rc (Rp1 +Rp2) �c (5.46)

As before, it is usually preferable to express this relation in terms of tooth numbers.
To that end, the pitch radii of the gears and the planet carrier radius are expressed in
terms of the module (alternatively, the diametral pitch could be used). The required
expressions are

Rs = ms �Ns=2 Rr = mr �Nr=2

Rp1 = ms �Np1=2 Rp2 = mr �Np2=2

Rc = Rs +Rp1 Rc = Rr �Rp2

= 1
2
ms (Ns +Np1) = 1

2
mr (Nr �Np2)

(5.47)

When the substitutions are all completed (both substitutions for Rc are required), the
�nal result is

NsNp2�s +NrNp1�r = (NrNp1 +NsNp2) �c (5.48)
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If this equation is solved for any of the rotations, the resulting tooth number ratios involve
only ratios of gears having a common diametral pitch or module. The whole procedure
is demonstrated in the following example.

5.13.1 Compound Planetary Train Example

Consider the planetary train shown in Figure 5.20 where there is no ring
gear, but two sun gears are used with a planet cluster. Both pitch radii and
tooth numbers are indicated in the �gure, but only the tooth numbers are
known. The input is the rotation �1 applied to the �rst sun gear. (1) What is
the relation comparable to equation (5.48) for this system? (2) If the second
sun gear is considered �xed and the output is the the planet carrier rotation.
What is the train ratio under the second situation? Note that there is no
requirement that the two planets be of the same diametral pitch or module,
and in most cases, they are not the same.

Figure 5.20: Compound Planetary Train for Example

As before, the �rst step is to express the rolling constraint for each gear mesh.

Rs1�s1 = �Rp1�p +Rc�c (5.49)

Rs2�s2 = �Rp2�p +Rc�c (5.50)

Eliminating the planet rotation, �p, gives a single relation between the two sun rotations
and that of the planet carrier:

Rs1Rp2�s1 �Rs2Rp1�s2 = Rc (Rp2 �Rp1) �c (5.51)
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Let m1 denote the (unknown) module for the �rst sun gear and its planet, while m2 is
the (unknown) module for the second sun gear and its planet. To eliminate the gear
pitch radii in favor of the tooth numbers, the following substitutions are useful:

Rs1 = m1 �Ns1=2 Rs2 = m2 �Ns2=2

Rp1 = m1 �Np1=2 Rp2 = m2 �Np2=2

Rc = Rs1 +Rp1 Rc = Rs2 +Rp2

= 1
2
m1 (Ns1 +Np1) = 1

2
m2 (Ns2 +Np2)

(5.52)

When the substitutions are all made (making use of both substitutions for Rc), the �nal
result is

Ns1Np2�s1 �Ns2Np1�s2 = (Ns1Np2 �Ns2Np1) �c (5.53)

Thus equation (5.53) is the equation comparable to equation (5.48) in answer to the �rst
question.

If sun gear number 2 is �xed, then �s2 = 0 and equation (5.53) reduces to

Ns1Np2�s1 = (Ns1Np2 �Ns2Np1) �c (5.54)

Taking the planet carrier rotation as the output, the train ratio is

�c=�s1 =
Ns1Np2

Ns1Np2 �Ns2Np1

(5.55)

Assume the tooth numbers are

Ns1 = 42 Np1 = 53

Ns2 = 22 Np2 = 67

Thus the train ratio is

�c=�s1 =
(42) (67)

(42) (67)� (22) (53) = 1:7075 (5.56)

This answers the second question asked.
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5.14 Conclusion

Familiarity with gearing is an essential skill for mechanical engineers. Gears have been,
and continue to be, one of the most important elements in mechanical power transmission.
There can be no doubt that this will continue to be true far into the future. They provide
highly e¢ cient, precise, positive power transmission at relatively low cost when produced
in large volume.

The discussion of this chapter has been limited to spur gearing only, but many other
types of gearing are in common use as well. The basic knowledge regarding the involute
curve is the key to understanding most types of gearing. The concepts of contact ratio,
interference, and undercutting carry over to other types of gearing as well. There are
countless sources of information on gearing available on the Internet and in various ref-
erence books such as the well known work of Dudley [2] : Not all of it is of equal value,
and the user must evaluate it with care. The reader will do well to master the concepts
presented here as a �rst step toward dealing with other types of gearing.
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Problems

Note: In the problems that follow, all tooth forms are assumed to be involutes unless
otherwise speci�ed.

5-1 Consider a gear tooth for which the circular thickness is 13 mm at a radius of 95
mm. The pressure angle for contact at this point is 21o. This tooth is to be extended
until it is pointed.

(a) What is the tip radius?

(b) What is the pressure angle for contact at the tip?

(c) What is the �ank angle at the tip?

5-2 Draw a base circle arc of radius Rb = 52 mm, and then construct an involute on this
arc. This may be done either manually (compass, straight edge, etc.), or by means of a
computer calculation;

5-3 An external gear with 37 teeth is designed for a nominal pressure angle of 20o with
a module m = 4 mm. This gear runs with a pinion of 18 teeth.

(a) What is the nominal center distance for this pair?

(b) What is the addendum radius for each gear?

(c) What is the base radius of each gear?

(d) If the center distance is increased by 1:6%, what is the modi�ed center distance?

(e) With the modi�cation of part (d), what is the modi�ed pressure angle?

5-4 Consider the gear pair of problem 5-3.

(a) What is the contact ratio when running on the nominal center distance?

(b) What is the contact ratio after the modi�cation of problem 5-3 (d)?

(c) Is there a problem of interference? Why?

5-5 An internal gear with 111 teeth is designed for a nominal pressure angle of 20o and
a module m = 2:5 mm. This mates with a pinion of 23 teeth.

(a) How far is the pitch point from the center of the internal gear?
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(b) What is the base radius of the internal gear?

(c) What is the nominal center distance for this pair?

(d) If the center distance is decreased by 0:5%, what is the actual pressure angle?

5-6 Consider the gear pair of problem 5-3.

(a) What is the diametral pitch for the gear?

(b) What is the diametral pitch for the pinion?

5-7 Consider a simple gear train consisting of three gears such that #1 and #2 engage
and #2 and #3 engage. The rotation of #1 is the input and the rotation of #3 is the
output. For tooth numbers N1 = 19, N2 = 31; and N3 = 29, what is the train ratio?

5-8 Consider the compound gear train shown in Figure 5.14, but assume that all the
gear axes lie along the same horizontal line. The tooth numbers are: N1 = 83; N2 = 27;
N3 = 117; N4 = 49; N5 = 19; and N6 = 31.

(a) What is the train ratio?

(b) If all gears are speci�ed to use the same module, and it is required that the overall
length of the train (left end to right end) be less than 950 mm, what is the largest integer
module that can be used for these gears?

5-9 A symmetric reverted train is to be designed, similar to Figure 5.5. The overall
train ratio is to be a close approximation to 9:5; while the parallel shaft o¤set is to be
no more than 115 mm. The minimum number of teeth allowed on the pinion to avoid
undercutting is 18 teeth with a maximum allowed is 120 teeth. What is the largest
integer or integer plus one half module (i.e., 0:5; 1; 1:5; 2; 2:5; ...) that can be used for
these gears, assuming that the same module is to be used for all four gears? Iteration is
likely to be required.

5-10 Consider a compound planetary train such as that shown in Figure 5.19. The sun
gear engages planet #1 which is on the same shaft as planet #2. Planet #2 engages the
ring gear. The tooth numbers are: Ns = 31; Np1 = 23; Np2 = 29; and Nr = 91.

(a) Is it possible that all the gears are made to the same module?

(b) If the sun gear is held �xed, the planet carrier is taken as the input, and the ring
gear rotation is the output, what is the train ratio?

(c) If the ring gear is held �xed, the planet carrier is the input, and the sun gear is the
output, what is the train ratio?
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Chapter 6

Statics and Virtual Work

6.1 Introductory Comments

The subject of statics is the familiar science of equilibrium. In an introductory mechanics
sequence, this is usually one of the �rst topics discussed, and almost invariably presented
in terms of Newton�s First Law for a particle and its various extensions to translation and
rotation of rigid bodies. Thus, the conditions for equilibrium are usually associated with
the vanishing of certain force and moment sums. Although these methods are relatively
simple and work well for simple problems, another approach is available that is often
superior in the context of machinery problems.

This alternative approach is called the Principle of Virtual Work. In a related form called
the Principle of Virtual Velocities, this principle can be traced back to the third century
B.C. In western Europe, the Principle of Virtual Work is associated with such famous
names of science as Leonardo da Vinci, Descartes, Lagrange, Gauss, Navier, Clapeyron,
and Kircho¤. It is also the oldest of what are termed the Energy Principles of Mechan-
ics, and has been suggested to be the fundamental axiom of mechanics. Consequently,
the Principle of Virtual Work has played a major role in the theoretical development
of mechanics. However, it is often omitted or only lightly included in current engineer-
ing curricula. Because it is especially useful in applications to machines, this chapter
attempts to remedy that slight.

Statics problems can be classi�ed in two types, depending on whether the geometry is
constant or non-constant. For the �rst type, many situations exist in which there is no
gross motion as the loads are applied, so that the loaded equilibrium geometry is very
nearly the same as the unloaded geometry, that is, the geometry is essentially constant.
Most civil structures, such as bridges, towers, and dams, are examples of this type.
The second type includes those cases in which gross motion may occur as the loads are

Mechanics of Machines 189 c 2019 Samuel Doughty



190 CHAPTER 6. STATICS AND VIRTUAL WORK

applied, and the equilibrium position is often not a known part of the problem. For these
cases, the geometry is not constant. The second type includes most devices designed to
move, particularly machines. Examples include a pair of pliers compressing a spring, the
pendulum scale mechanism, and the slider-crank mechanism used in automotive engines.
Situations of the second type are often di¢ cult to address by means of Newton�s First
Law (Equilibrium). The Principle of Virtual Work applies to both types of problems, but
it is especially suited to the second type, where application of force and moment sums
often leads to di¢ culty.

Most mechanisms transform mechanical power of one sort to another, such as a gear box
that transforms high-speed rotary power to low-speed rotary power. If it is necessary
to determine the relation between input force (torque) and output force (torque) by
application of the First Law, a sequence of free-body diagrams, including internal forces
and reactions, is required with an associated large number of equations. When this
problem is approached from the Principle of Virtual Work, the reactions and internal
forces are not involved in the formulation, and the number of equations is greatly reduced.

The following sections of this chapter present the Principle of Virtual Work, a presenta-
tion initially based on Newton�s First Law, and then show applications of this principle
to several machine problems. In the applications, it is useful to consider also the First
Law formulation to gain an insight into the di¢ culties to be expected there and to see
the types of problems best suited to each approach.

6.2 Principal of Virtual Work

The Principle of Virtual Work is a statement of the conditions for equilibrium in terms of
work, a scalar quantity, signi�cantly di¤erent from the vectorial force and moment sums
derived from Newton�s First Law as extended to rigid bodies. The concept of work is
assumed to be familiar, but the modi�er virtual requires some explanation. It is necessary
to de�ne a virtual displacement before the virtual work can be de�ned. Following these
de�nitions, the Principle of Virtual Work is stated and justi�ed.

Consider a particle located by the position vector r. A virtual displacement of that
particle, denoted �r, is a postulated, arbitrary di¤erential displacement of the particle,
performed in zero-elapsed time, and consistent with any applicable constraints. Note the
features of the virtual displacement:

1. It is a di¤erential quantity, an in�nitesimal;

2. It is postulated, or proposed for discussion, rather than a displacement associated
with an actual motion;
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3. It occurs in zero elapsed time, which means that time is constant during a virtual
displacement;

4. It is arbitrary, insofar as that is possible consistent with the applicable constraints.

The �rst three characteristics are reasonably clear in themselves, but the fourth may
require an illustration. For a single particle moving without any constraints, the virtual
displacement is completely arbitrary in both in�nitesimal magnitude and direction. If
the particle is then constrained to remain a constant distance from a �xed point, then the
particle must move on the surface of a sphere. The virtual displacement is then arbitrary
in magnitude and in direction on the surface of the sphere. A virtual displacement normal
to the surface of the sphere would not be consistent with an applicable constraint. If
the particle is part of a rigid body, then the virtual displacement of the particle must be
consistent with the virtual displacement of the rigid body as a whole.

The delta notation, using the lowercase Greek delta, �, denotes an operator similar to the
more common di¤erential operator, d. The four characteristics just noted are actually
the properties of the delta operator. For comparison, consider the two operators are
applied to a function f(x; y; z; t)

df =
@f

@x
dx+

@f

@y
dy +

@f

@z
dz +

@f

@t
dt (6.1)

�f =
@f

@x
�x+

@f

@y
�y +

@f

@z
�z (6.2)

Notice that �f involves the delta operator applied to each of the coordinates, x; y; and
z. Because of the third characteristic item in the initial list, the delta operator applied
to the time variable is zero.

As just used, applying the delta operator to the position vector r produces �r, called a
virtual displacement. In other circumstances, the result of applying the delta operator
to the function f is called the variation of f . This is a carryover from the calculus of
variations, an advanced mathematical topic in which the delta operator is widely used.
However, the calculus of variations is not required for any work in this book. It is well to
be aware that the terms "virtual something" and "variation of something" are, in fact,
the same operations, and both denote the application of the delta operator.

If a force F is applied to a particle undergoing a virtual displacement �r, then the force
does virtual work �W , a scalar expressed in terms of a dot product:

�W = F � �r (6.3)

Thus, virtual work is the work associated with a �nite force applied through a virtual
displacement. The four characteristics, associated with the use of the delta operator,
apply to virtual work.
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6.2.1 Principle of Virtual Work for a Particle

For a single particle, the Principle of Virtual Work says that the particle is in equilibrium
if the virtual work of all forces acting on the particle is zero. Because the determination
of equilibrium conditions based on Newton�s First Law is a familiar approach, the �rst
objective is to show that the Principle of Virtual Work is fully equivalent to Newton�s
First Law. This requires two steps: (1) to show that the Principle of Virtual Work is a
necessary consequence of the First Law (necessity); and (2) to show that the First Law
is a consequence of the Principle of Virtual Work (su¢ ciency). These are both given
in detail for the present situation. For later cases, only necessity shown; the su¢ ciency
arguments are similar but more involved than the one given here.

To show that the Principle of Virtual Work is a necessary consequence of Newton�s First
Law for the case of a single particle, consider the conditions for equilibrium according to
the First Law: X

i

Fi = 0 (6.4)

The particle is located by the position vector r, and if given a virtual displacement �r,
the virtual work is

�W =

 X
i

Fi

!
� �r (6.5)

Because one factor in the dot product is zero, the product is zero. Thus, if the First Law
is satis�ed, the virtual work is necessarily zero.

To show that the Principle of Virtual Work is su¢ cient for equilibrium, the argument
begins with the vanishing of the virtual work and show that the First Law conditions are
a consequence. The Principle of Virtual Work says that equilibrium exist provided the
virtual work is zero. That is,

�W =

 X
i

Fi

!
� �r =0

This demonstration is by contradiction, so assume thatX
i

Fi = jFj eF jFj 6= 0 (6.6)

that is, assume that the sum of forces is non-zero. The quantity eF is a unit vector in
the direction of the resultant force, whereas jFj is the magnitude of the resultant. Now
because �r is completely arbitrary, it could be that

�r = j�rj eF j�rj 6= 0 (6.7)
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in which case the virtual work is positive,

�W = jFj eF � j�rj eF = jFj j�rj (6.8)

There is no way that this can be zero for arbitrary j�rj, except to violate the assumption
that jFj is non-zero. Thus, it must be concluded that the vanishing of the virtual work
implies the vanishing of the resultant force on the particle, the condition for equilibrium.
This completes the su¢ ciency argument for the single particle case.

6.2.2 Principle of Virtual Work for a Rigid Body

Next consider the extension of the Principle of Virtual Work to a rigid body. Figure
6.1 shows a rigid body typi�ed by three particles, labeled (1), (2), and (3). For each of
the particles there is a position vector, r1, r2, and r3. On particle (1) there are three
forces shown: F1 is an external force applied to the body at the location of this particle,
whereas f12 and f13 are internal forces required to enforce the rigid body condition. Similar
forces act on the other particles. If the body is in equilibrium, then each particle is in
equilibrium and the First Law requires that

Figure 6.1: Single Rigid Body Represented by Three Typical Particles

F1 + f12 + f13 = 0 (6.9)

F2 + f21 + f23 = 0 (6.10)

F3 + f31 + f32 = 0 (6.11)
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Because each force sum is zero, the sum of the virtual work of these force sums is also
zero:

�r1 � (F1 + f12 + f13) + �r2 � (F2 + f21 + f23) + �r3 � (F3 + f31 + f32) = 0 (6.12)

Now look at a pair of terms in this summation, and recall that the internal forces must
be equal and opposite to each other, fij = �fji

�r1 � f12 + �r2 � f21 = �r1 � f12 � �r2 � f12
= (�r1 � �r2) � f12 (6.13)

Let e12 denote a unit vector directed from particle 1 toward particle 2, and use e12 to
express the force f12:

e12 =
r2 � r1
jr2 � r1j

(6.14)

f12 = jf12j e12 (6.15)

Then, the di¤erence in virtual displacements appearing in the virtual work of the internal
forces is

�r1 � �r2 = � (r2 � r1) = � (jr2 � r1j e12)
= e12� jr2 � r1j+ jr2 � r1j �e12

Because the body is rigid, jr2 � r1j is constant and � jr2 � r1jmust be zero; this eliminates
the �rst term on the right side. Any change in the unit vector e12 must be normal to e12,
so that e12 � �e12 must also be zero. The two terms from the virtual work considered at
the beginning of this argument then vanish from the following:

�r1 � f12 + �r2 � f21 = jr2 � r1j �e12 � jf12j e12 = 0 (6.16)

In a similar manner, the virtual work of each of the other internal force pairs can be
shown to be zero. This reduces the original virtual work sum to

�r1 � F1 + �r1 � F2 + �r1 � F3 = 0 (6.17)

The conclusion is that equilibrium of the rigid body requires that the virtual work of the
external forces be zero. This, then, is the Principle of Virtual Work for a Rigid Body.
Note that in forming the sum, the virtual displacements are subject to the constraint
that the particles must move as parts of a rigid body.

Mechanics of Machines c 2019 Samuel Doughty



6.2. PRINCIPAL OF VIRTUAL WORK 195

6.2.3 Principle of Virtual Work for a System of Rigid
Bodies

Before attempting to extend the Principle of Virtual Work to multiple rigid bodies, it
is necessary to point out one of the key features in the preceding discussion for a single
rigid body. The rigid body assumption prevents the absorption of any work by the
system, either by elastic deformation or by friction with eventual conversion to heat.
This avoidance of energy absorption by the system is a key assumption in dealing with
systems of rigid bodies. This does not, however, prevent the inclusion of friction forces
external to the system, but it does preclude friction at the contact points between the
bodies. A system of rigid bodies for which there is no energy absorption at the points
interconnection is called an ideal system.

An ideal system of two pin-jointed rigid bodies is shown in Figure 6.2(a); free-body
diagrams for the two bodies are shown in Figure 6.2(b).

Figure 6.2: (a) An Ideal System of Rigid Bodies; (b) Free-Body Diagrams for the Two
Rigid Bodies

Note that the reactions forces, R1 andR2, are unknown in both direction and magnitude.
However, it is known that they are equal and opposite, R1 = �R2 by Newton�s Third
Law. The equilibrium condition in terms of virtual work for each rigid body, taken
individually, has already been established. It is as follows:

Body 1 : �r1 � F1 + �r2 � F2 + �r3 � F3 + �rA1 �R1 = 0 (6.18)

Body 2 : �r4 � F4 + �r5 � F5 + �rA2 �R2 = 0 (6.19)

The two bodies are to remain connected at A, so there is a constraint on the virtual
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displacements
�rA1 = �rA2 = �rA (6.20)

Adding the two virtual work expressions together and eliminating the internal force terms
because of the Third Law relation between R1 and R2 and that between �rA1 and �rA1
results in

�r1 � F1 + �r2 � F2 + �r3 � F3 + �r4 � F4 + �r5 � F5 = 0 (6.21)

The Principle of Virtual Work for an Ideal System of Rigid Bodies says that the system
will be in equilibrium provided the virtual work of the forces external to the system is
zero. Note that the forces R1 and R2 are internal to the system and, therefore, are
not included in the statement of the Principle of Virtual Work. Similarly, reactions at
stationary supports are external forces, but they do no virtual work and, thus, are not
required in the application of the Principle of Virtual Work. The fact that these two
types of terms are not required is one of the major advantages of the Principle of Virtual
Work. This development shows why the statement is limited to ideal systems; if non-zero
work could be done at the point of interconnection during a virtual displacement, then
other terms would need to be included in the virtual work expression. A simple example
will help to clarify the ideas presented above and to demonstrate their application.

Figure 6.3: Crank-Lever Mechanism

6.2.3.1 Crank-Lever Mechanism

Consider the crank-lever mechanism shown in Figure 6.3. The external
loads applied to the system that can do virtual work include the vertical force
F and the momentM acting on the crank. The system is in equilibrium under
these loads. Determine the relation between F , M , and the angle � in the
equilibrium condition.

According to the Principle of Virtual Work, the equilibrium relation is described by

�W =M �� � F �Y = 0 (6.22)
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Notice that the work of the moment is positive because M and � are in the same sense.
Similarly, the work of the force F has a negative sign because F and the coordinate Y
are in opposite senses. This is a single degree of freedom mechanism, and it is convenient
to associate that degree of freedom with the angle �. There must then be a kinematic
relation expressing Y in terms of �. From the analysis done in Chapter 2, the angle A is
expressed by

tanA =
R sin �

C +Rc cos �
(2.4)

The coordinate Y is then related to A (and thus indirectly to �) by

Y = L sinA (6.23)

A virtual change in Y is required for the virtual work expression, and this necessitates
an expression for the virtual change in A expressed in terms of ��. These are obtained
by di¤erentiation:

�A =
dA

d�
�� = KA (�) �� =

R

B
cos (A� �) �� (6.24)

from equation (2.10) and

�Y =
dY

d�
�� = KY (�) �� =

RL

B
cosA cos (A� �) �� (6.25)

Using this expression for the virtual displacement �Y , the virtual work expression is

�W =M �� � F
RL

B
cosA cos (A� �) �� (6.26)

Due to the fact that this expression must be zero for equilibrium, and because �� is
arbitrary and not necessarily zero, the coe¢ cient of �� must be zero, with the following
result:

M � F
RL

B (�)
cosA (�) cos [A (�)� �] = 0 (6.27)

This last equation involves the variables M , F , A, B, and q; earlier work (Chapter 2)
relates both A and B to �.

One way to present the relation between M , F , and � in graphical form is to rearrange
the equation to a nondimensional form, reading

M

FL
=

R

B (�)
cosA (�) cos [A (�)� �] = f (�) (6.28)
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and then plot the ratio M=(FL) versus �. A plot of this sort is presented in Figure 6.4
for the parameters C = 11 in. and R = 5 in. This plot shows that when the crank and
the lever are colinear, � = 0, the maximum moment is required. When the crank angle is
� = �2:0426 radians, the required moment is zero. This occurs because the crank is then
normal to the lever. With the positive sign, the load F is supported by compression in
the crank with no moment required; this position is not stable, but it is an equilibrium
con�guration. If the negative sign is taken, the load F is supported by tension in the
crank, and the result is a stable equilibrium position.

Figure 6.4: Moment to Load Ratio for Crank-Lever Mechanism

6.2.4 Principle of Virtual Work with Multiple De-
grees of Freedom

In the preceding example, the virtual angular displacement, ��, was eventually displayed
as one factor of a product that must be zero. The argument made was that �� is arbitrary,
and that there could be no assurance that it is zero. On this basis, it was then concluded
that the coe¢ cient of �� must be zero because the relation was to hold for any ��. This
simple reasoning was possible because of the fact that the system had only one degree
of freedom. However, note that even this argument could not be made until �A and �Y
were expressed in terms of a virtual change in the single generalized coordinate, �. In
the event that the system has multiple degrees of freedom, a more involved argument is
required.

Consider next a system with N1 degrees of freedom associated with the generalized co-
ordinates q1; q2; :::; qN1. The position vectors for the load application points can be
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expressed as

r1 = r1 (q1; q2; : : : qN1) (6.29)

r2 = r2 (q1; q2; : : : qN1)
...

For this system, the virtual work of the external loads is

�W = F1 � �r1 + F2 � �r2 + � � �

= F1 �
�
@r1
@q1

�q1 +
@r1
@q2

�q2 + � � �
@r1
@qN1

�qN1

�
+F2 �

�
@r2
@q1

�q1 +
@r2
@q2

�q2 + � � �
@r2
@qN1

�qN1

�
...

+FN1 �
�
@rN1
@q1

�q1 +
@rN1
@q2

�q2 + � � �
@rN1
@qN1

�qN1

�
= �q1

�
F1 �

@r1
@q1

+ F2 �
@r2
@q1

+ � � �+ FN1 �
@rN1
@q1

�
+�q2

�
F1 �

@r1
@q2

+ F2 �
@r2
@q2

+ � � �+ FN1 �
@rN1
@q2

�
...

+�qN1

�
F1 �

@r1
@qN1

+ F2 �
@r2
@qN1

+ � � �+ FN1 �
@rN1
@qN1

�
(6.30)

The Principle of Virtual Work states that the virtual work expression shown will be zero
if the system of forces is in equilibrium, but this is only a single, scalar equation. Where
will the necessary N1 simultaneous equations come from? The answer to this question
comes from the de�nition of a generalized coordinate as discussed in Section 1.2. One
of the characteristics of a generalized coordinate discussed there was that generalized
coordinates are independent. Each generalized coordinate can be varied independently,
having no e¤ect on the others. In the current situation, this means that each of the �qi
is independent of all the others. The last form for the virtual work above shows that
it is as a sum of terms, each involving the virtual change in a generalized coordinate
multiplied by a coe¢ cient. Assume �rst that these coe¢ cients are not all zero. The
Principle of Virtual Work states that this sum is zero for arbitrary �qi. This means
that the virtual work sum is zero, no matter how the �qi are chosen. A non-zero �q1,
multiplied by a non-zero coe¢ cient, makes a non-zero contribution to the sum. Without
much di¢ culty, it should be possible to choose �q2 such that the second term will also
make a non-zero contribution of the same sign as that of the �rst term, and so on. The
eventual consequence of this reasoning is that the virtual work sum can be made non-zero
by some choices of the variations. The only way to assure that the sum must be zero,
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no matter what choices are made for the �qi, is for each of the coe¢ cients to be zero.
There are Ni coe¢ cients, so this provides the required Ni equilibrium equations. In the
abstract, this appears quite awkward, but in practice it is quite simple to apply. An
example will demonstrate the application.

6.2.4.1 Summing Linkage

One very simple multidegree of freedom mechanism is the summing link-
age. Figure 6.5 shows the summing linkage in equilibrium under the applied
loads P1, P2, and F . Determine the values of P1 and P2 in terms of F .

Figure 6.5: Summing Link in Equilibrium Under Forces P1; P2, and F

For this mechanism, there are two degrees of freedom, most easily associated with the
coordinates q1 and q2. A very simple kinematic analysis shows that the output motion,
X, is expressed as

X =
Cq1 +Bq2
B + C

(6.31)

Applied to this situation, the Principle of Virtual Work states

�W = P1 �q1 + P2 �q2 � F �X = 0 (6.32)

and the virtual displacement �X is

�X =
C

B + C
�q1 +

B

B + C
�q2 (6.33)
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The virtual work of the external forces, expressed in terms of virtual displacements in
the generalized coordinates, is

�W =

�
P1 � F

C

B + C

�
�q1 +

�
P2 � F

B

B + C

�
�q2 = 0 (6.34)

According to the preceding argument, the coe¢ cients of �q1 and �q2 must each be zero.
From this the forces P1 and P2 are

P1 = F
C

B + C
(6.35)

P2 = F
B

B + C
(6.36)

These results are readily veri�ed by using moments about the top and bottom pin joints.
As is observed in that veri�cation, using moment sums for this simple problem is probably
a quicker way to the result. The purpose here, however, is to demonstrate the method �
a method of great power in more complicated problems.

6.2.5 Potential Energy Representation of Conserva-
tive Forces

In extending the Principle of Virtual Work to systems of rigid bodies, care was taken
to exclude systems that could absorb energy in a virtual displacement. It is now use-
ful to relax that restriction, allowing the inclusion of interconnections in which there is
fully recoverable energy storage. Therefore, conservative energy storage will now be in-
cluded, but nonconservative energy absorption remains excluded. Two obvious examples
of e¤ects to be included are springs (both linear and nonlinear) and gravitational forces.

Consider a system of several rigid bodies subject to external loads Fi (which are inherently
nonconservative) and to conservative, working internal loads fj. Any internal loads that
do not move during the virtual displacement are called nonworking internal loads. An
example of such a nonworking load is the reaction at a �xed support; it cannot move
and, thus, does no work. When the virtual work of the forces acting on each body are
summed, the virtual work of this force system is

�W = F1 � �r1 + F2 � �r2 + � � �+ f1 � �R1 + f2 � �R2 + � � � (6.37)

where ri are the position vectors for the points of application of the external loads andRj

are the position vectors for the points of application of the working, conservative internal
forces. For every conservative force there exists a potential function, V , such that

fj = �rVj (6.38)
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where the del operator (r), denoted by the inverted capital Greek delta, indicates the
following operation in rectangular Cartesian coordinates:

r = i
@

@x
+ j

@

@y
+ k

@

@z
(6.39)

Note that this is just an operator; it requires an operand on which to operate. Note
also that the form given for the del operator here is speci�cally for rectangular Cartesian
coordinates; in other coordinate systems the del operator takes di¤erent forms. In terms
of the potential function, the virtual work of one of the conservative, working internal
forces is

�Wj = (�rVj) � �Rj

= �
�
i
@Vj
@x

+ j
@Vj
@y

+ k
@Vj
@z

�
� (i �x+ j �y + k �z)

= ��Vj (6.40)

When the virtual work sum is rewritten, there are two types of terms to be included

�W =
X
i

Fi � �ri �
X
j

�Vj (6.41)

where the �rst sum is the virtual work of the external loads and the second sum is the
contribution from the potential energy changes. The Principle of Virtual Work, modi�ed
to allow for the inclusion of some forces in terms of potential functions, requires that the
preceding expression vanish for equilibrium. The potential functions just described are
nothing other than the familiar potential energy functions. Thus, if a gravitational force
is to be represented, with z positive along the upward vertical, the potential function is

V =Mgz (6.42)

where M is the mass of the body and g is the gravitational constant. The variation of
this potential is

�V =Mg �Z (6.43)

The case of a spring is slightly more complicated. Consider an unstretched spring ori-
ented along the X-axis with free length So. The spring constant is denoted K. In the
equilibrium con�guration, the ends of the spring are at X1 and xX , respectively, and
there is a tensile force F in the spring:

F = K(X2 �X1 � So) (6.44)
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Now consider small displacements of both ends from their equilibrium positions, �X1

and �X2, stretching the spring in the process. Because these displacements are small,
the force in the spring is approximately constant during the displacements. The work
done on the rigid bodies during these displacements consists of the sum of the work
done at the ends:

�W = �F �X2 + F�X1

= �K(X2 �X1 � So) (�X2 � �X1)

= ��
�
1

2
K(X2 �X1 � So)

2

�
= ��

�
1

2
K (deformation)2

�
(6.45)

It is evident that the negative variation of the potential energy function for the spring
provides the correct terms for the virtual work done on the rigid bodies. These ideas are
illustrated in the following example problem.

6.2.5.1 Spring Supported Lever

The spring supported lever shown in Figure 6.6 supports the weight W =
15 lb. The spring is anchored at a distance3C = 42 in. above the pivot point,
and the spring is attached to the lever at a distance 3C. The spring rate is
K = 50 lb/in., and the free length of the spring is 3C. The full length of the
lever is 4C = 56 in., and the lever is weightless. There is an external moment
M = 35 in-lb acting to help support W . What is the equilibrium value for
the angle �? What is the tension in the spring at equilibrium?

Figure 6.6: Spring Supported Lever Holding Weight W
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First consider the kinematic aspects of the problem. Let YW denote the elevation of the
end of the rod:

YW = 4C sin� (6.46)

�YW = �� 4C cos� (6.47)

The length of the spring is S, while the free length is denoted So.

S2 = (3C � 3C sin�)2 + (3C cos�)2

= 2 (3C)2 (1� sin�) (6.48)

�S = �9C
2 cos�

S
�� (6.49)

With these geometric relations established, the potential energy terms are

VW = W � YW
�VW = W �YW = 4CW cos� �� (6.50)

VS =
1

2
K (S � So)

2

�VS = K (S � So) �S

= �K (S � So)

S
9C2 cos� �� (6.51)

The condition for equilibrium, expressed in terms of virtual work is

�W =M ��� �VW � �VS = 0 (6.52)

After substitutions and minor rearrangement of terms, the equilibrium equation to be
solved for � is

M � 4CW cos�+ 9C2K cos�

"
1� 1

(2� 2 sin�)1=2

#
= 0 (6.53)

Using the parameter values just given, an iterative solution gives � = 0:51302 radians.
With this known, it is relatively straightforward to determine the equilibrium length of
the spring, S, and then the spring tension, Ts = K(S � So) = 19:2178 lb. Note that
both gravitational and spring potential energy are demonstrated in this problem. Further
examples of the use of potential energy terms are shown in the next section.
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6.3 Applications of Virtual Work

In this section, two more applications of the Principle of Virtual Work are given. For
each case, it is well to consider the alternative approach, speci�cally the application of
force and moment sums to the same problems. The power of the Principle of Virtual
Work becomes more evident with the increasing complexity of the application.

6.3.1 Phase-Shifting Device

The mechanism shown in Figure 6.7 is a chain or timing belt system
with provisions for adjusting the phase relation between the driving motion,
q1 and the output motion, A. The phase adjustment is controlled by the
second primary variable, q2. For this example, consider the system to be in
equilibrium under the the e¤ects of the external force P2 (holding the control
block stationary), the driving moment M1, and the load moment MA. The
problem is to determine the relations between M1, MA, and P2. Note that
the chain or belt may be moving or not, but in either case the system speed
is considered constant.

Figure 6.7: Phase Shifting Device in Equilibrium

The kinematic relation between q1; q2; and A is

A = q1 + (2=R) q2 (6.54)

which gives the following relation among the system virtual displacements

�A = �q1 +
2

R
�q2 (6.55)
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whereR is the radius of each of the four corner sprockets with �xed centers. The condition
for equilibrium is that the virtual work vanish:

�W = M1 �q1 + P2 �q2 �MA �A

= M1 �q1 + P2 �q2 �MA

�
�q1 +

2

R
�q2

�
= �q1 (M1 �MA) + �q2

�
P2 �

2

R
MA

�
= 0 (6.56)

By virtue of the fact that q1 and q2 are generalized coordinates, and thus are mutually
independent, the coe¢ cients for each virtual displacement must be zero to assure the
vanishing of the virtual work for all possible virtual displacements. From those two
statements come the �nal relations:

M1 = MA (6.57)

P2 =
2

R
MA (6.58)

This shows that, without any losses, the required driving moment is exactly equal to the
load moment, exactly as expected.

6.3.2 L-shaped Bracket

Consider a weightless L-shaped bracket with leg lengths B and C as shown
in Figure 6.8(a). This bracket is constrained to roll without slipping on a
stationary cylinder of radius R under the in�uence of a spring and an external
force F (Figure 6.8(b)). When the legs of the bracket are parallel to the X�
and Y�axes (shown in broken line), the bracket extends a distance a below
the X�axis, and the spring force is zero. The lower end of the spring is
anchored at the point (Xo; Yo), the spring rate is K, and the free length is
So. As the horizontal force F is increased, the point of contact between the
bracket and the stationary cylinder moves through the angle �. Determine
the equilibrium value for angle � and the corresponding tension in the spring.

This problem involves a single degree of freedom that is readily associated with the angle
�. It is useful to de�ne body coordinates U and V along the legs of the bracket. Any
point on the bracket can then be located in terms of the body coordinates for that point,
(up; vp). From Figure 6.8(b), it is evident that the base coordinates for such a point are
given by
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Figure 6.8: L-shaped Bracket in Equilibrium Under the External Force F and the Spring
Action

8<:Xp

Yp

9=; =

24 cos � � sin �
sin � cos �

358<: R + up

vp � a�R�

9=; (6.59)

8<: �Xp

�Yp

9=; = ��

8<: dXp=d�

dYp=d�

9=;
= ��

8<:Kpx (�)

Kpy (�)

9=;
= ��

8<: �up sin � + (a+R� � vp) cos �

up cos � + (a+R� � vp) sin �

9=; (6.60)

Note that the derivatives are, in fact, the velocity coe¢ cients for the particular point
with respect to the generalized coordinate �. Let (i) and (j) denote the points of spring
attachment and load application, respectively, as shown in the �gure. The virtual work
of the applied force will be simply �F �Xj = �FKXj��, so no further analysis is required
for this term. For the potential energy of the spring, it is necessary to �rst express the
length of the spring as a function of �

S2 = (Xi �Xo)
2 + (Yi � Yo)

2 (6.61)

�S =
(Xi �Xo)KXi + (Yi � Yo)KYi

S
�� (6.62)
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(Note that is often easier to write S2 than S; this is because the usual approach is via
the Pythagorean Theorem. This leads to the form shown for the derivative, a result that
is simple to compute.)

The spring free length value, So, was given as part of the problem statement. This implies
that So + a = �Yo for the initial geometry. The spring potential energy is VS

VS =
1

2
K (S � So)

2

�VS = K
(S � So)

S
[(Xi �Xo)KXi + (Yi � Yo)KYi ] �� (6.63)

The virtual work expression, including the modi�cation to allow for representation of
conservative forces through the use of the potential energy, is

�W = �F �Xj � �VS

=

�
�FKXj �K

(S � So)

S
[(Xi �Xo)KXi + (Yi � Yo)KYi ]

�
�� (6.64)

Because the virtual displacement �� is arbitrary, the coe¢ cient must be zero and the
equilibrium equation is

FKXj +K
(S � So)

S
[(Xi �Xo)KXi + (Yi � Yo)KYi ] = 0

This equation, along with the expressions for S, Xi,Yi, KX1, KY1, andKXj must be solved
for the equilibrium value of �. Because of the complexity of the equations involved, an
iterative solution is indicated.

6.3.2.1 Numerical Values

It should be noted that some of the data are interrelated. Speci�cally, the following
relations must be true:

R + C = Xo (6.65)

So + a = �Yo (6.66)

For numerical work, take the following values for the system parameters:
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B = 0:3048 m C = 0:0762 m

R = 0:1270 m a = 0:0508 m

Xo = 0:2032 m Yo = �0:2032 m

So = 0:1524 m

F = 44:4822 N K = 2627:9 N/m

An iterative solution, based on these parameter values, gives the equilibrium position

� = 0:3385 radian (6.67)

With the angular position known, it is a simple matter to evaluate the spring length and
from that to determine the spring tension TS:

�S = 0:030865 m (6.68)

TS = 81:080 N (6.69)

6.3.3 Spring-Loaded Trammel

The spring loaded trammel was previously introduced in Section 2.3 and
the kinematic analysis is developed there. The same system is shown at rest
in Figure 6.9. The question of interest here is to �nd the equilibrium position
of the mechanism. Note that the system operates in the vertical plane, so the
rest position requires the force developed in the spring to support the weight
of the link and the vertical slider.

The trammel consists of a single link with two sliders that move in guides along the
x� and y�axes, respectively. The system operates in the vertical plane, so that gravity
forces are operative, and there is also a spring acting on the horizontal slider. In the
initial state, the weight of the system is supported on the deformation of the spring.

The kinematic analysis in Chapter 2 established the following expressions:

x = L cos � (2.26-2.31)

y = L sin �

Kx = �L sin �
Ky = L cos �

Lx = �L cos �
Ly = �L sin �
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Figure 6.9: Spring Loaded Trammel at Equilibrium Rest

The center of mass of the link is at the middle, so that the center of mass values are
simply half of the values shown above.

6.3.3.1 Relations for the Spring

The spring is understood to be a simple, linear spring, such that the force through the
spring is proportional to the elongation of the spring. Let x = xo describe the state of
the assembly when the spring is strain free, that is when there is no force in the spring.
The free length is a design parameter and thus is assumed to be known. Then the force
in the spring is given by

FS = KS (x� xo) = K (L cos � � xo) (6.70)

The task at hand is to �nd the rest value of xeq, that is, the position in which the assembly
sits at rest equilibrium. This must be a number di¤erent from xo because there must be
some force in the spring in order to support the weight of the assembly at rest.

The external forces acting on the mechanism are (1) gravity and (2) the spring force.
Both of these are conservative forces and thus can be represented entirely by the use of
potential energy. Application of the Principle of Virtual Work thus begins by writing the
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system potential energy function for a typical position:

V = m1gyc +m3gy +
1

2
KS (x� xo)

2

=

�
m3 +

1

2
m1

�
gL sin � +

1

2
KS (L cos � � xo)

2 (6.71)

where

yc is the elevation of the link center of mass

y is the elevation of the vertical slider

The virtual work expression is simply the negative of the partial derivative of the potential
energy with respect to �, so that

�W = �@V
@�

��

= �
��
m3 +

1

2
m1

�
gL cos � �KS (L cos � � xo) (�L sin �)

�
�� (6.72)

Setting the virtual work to zero shows gives the expression for the equilibrium condition,
thus �

m3 +
1

2
m1

�
gL cos �eq �KSL sin �eq (L cos �eq � xo) = 0 (6.73)

6.3.3.2 Numerical Values

Consider the speci�c case where the coupling link, body 1, is a steel bar, with L = 30
in., w1 = 48:287 lb, I1c = 9:3800 lb�s2�in. For the x�axis slider, w2 = 17 lb, and for the
y�axis slider, w3 = 25 lb, the spring sti¤ness is KS = 60 lb/in, and the free length of
the spring is xo = 12 inches. Note that the weights of the components are given rather
than the masses. Since the masses only appear in the equation in combination with
the acceleration of gravity, this requires only that an mg product be replaced with the
relevant weight.

The equation above is most easily solved numerically (a closed form solution is unknown).
In the range 0 � � � �=2, there are two solutions for the equilibrium equation.

1. Equilibrium Position #1 �Unstable �The �rst solution gives a very small
value of �eq � 0:04555 = 2:6098o. In this position, the link is almost level and the
spring is greatly stretched. The spring is stretched almost 18 inches, and the load
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in the spring is over 1000 lb. It should be intuitively evident that this is an unstable
equilibrium position. For most purposes, unstable equilibrium positions are of no
further interest, and this one is disregarded for all that follows.

2. Equilibrium Position #2 �Stable �The second equilibrium solution is stable
at �eq = 1:1458 rad1 = 65:647o. For this position, the horizontal slider position
is xeq = 12:371 in., and the spring force is FS�eq = 22:244 lb. In this position,
the spring is stretched only a little less that 0:4 in., and the spring force is quite
moderate.

6.4 Static Stability

In the previous section, the word stable has been used, relying on the general background
of the reader for its understanding. Stability is an important concept, and it merits
further discussion here.

Figure 6.10: Concept of Static Stability

Figure 6.10 shows three common examples used to illustrate the concept of static stability,
each case involving a ball at rest. In the �rst case, (a), the ball is balanced on the point
of a pencil. In the second case, (b), the ball is at rest on a �at, level surface, while in
the third case, (c), the ball rests in a shallow dish. In each case, the weight of the ball is
supported, so the ball is in vertical equilibrium.

All readers will know intuitively that the ball on the pencil point will not remain there,
but rather it will fall o¤. It is unstable, because even the tiniest disturbance, such as a
breath of air, causes it to depart grossly from its initial position. Considering the other
extreme, Figure 6.10 (c), everyone will agree that the ball will remain in the shallow dish
inde�nitely. While it is certainly true that the ball can be removed from the dish by the
applications of su¢ cient force, it is certainly true that small disturbances will not cause
it to signi�cantly depart from its initial position. If slightly disturbed, it will move a
short distance, but then it will return to its initial position. The ball in the dish is stable.

1Where it is important to show that the Principle of Virtual Work is satis�ed numerically, it may
prove necessary to use the more exact value �eq = 1:145755765 radians.

Mechanics of Machines c 2019 Samuel Doughty



6.5. ANOTHER LOOK AT VIRTUAL WORK 213

Finally, look at the center �gure, Figure 6.10 (b), where the ball rests on the �at, level
surface. If it is slightly disturbed, it moves a short distance and then stops. But it does
not return to its initial location. The ball on the level surface is said to be neutrally
stable.

The key question in considering static stability is this: How does the system respond to
a small displacement from the initial con�guration?

� If the system returns to its initial con�guration, it is stable.

� If the system diverges from its initial con�guration, it is unstable.

� If the system moves to a nearby equilibrium con�guration, it is neutrally stable.

6.5 Another Look at Virtual Work

Earlier in this chapter, vector notation involving dot products was used extensively, even
though the resulting virtual work expressions are always scalars. It is useful to reexamine
the principle of virtual work using matrix notation, as it o¤ers a di¤erent perspective on
that principle and on the meaning of the generalized force. Consider a force Fi acting at
the point ri on a rigid body, where ri is a function of the generalized coordinates. The
virtual work of this force is then

�W = Fi � �ri
= (iFix + jFiy) � (i�Xi + j�Yi)

= Fix�Xi + Fiy�Yi (6.74)

The components of the virtual displacement are

�Xi =
X
j

@Xi

@qj
�qj (6.75)

�Yi =
X
j

@Yi
@qj

�qj (6.76)

These sums are readily indicated by the matrix products

8<: �Xi

�Yi

9=; =

24KiX1 KiX2 KiX3 � � �

KiY 1 KiY 2 KiY 3 � � �

35
8>>><>>>:
�q1

�q2
...

9>>>=>>>; (6.77)

Mechanics of Machines c 2019 Samuel Doughty



214 CHAPTER 6. STATICS AND VIRTUAL WORK

where the Ks are the velocity coe¢ cients for the particular point. For several forces
applied at several di¤erent points, the notation is readily expanded:8>>>>>>>>><>>>>>>>>>:

�X1

�Y1

�X2

�Y2
...

9>>>>>>>>>=>>>>>>>>>;
=

26666666664

K1X1 K1X2 K1X3 � � �

K1Y 1 K1Y 2 K1Y 3 � � �

K2X1 K2X2 K2X3 � � �

K2Y 1 K2Y 2 K2Y 3 � � �
...

...
...

. . .

37777777775

8>>>>>><>>>>>>:

�q1

�q2

�q3
...

9>>>>>>=>>>>>>;
(6.78)

For the virtual work of these several forces, matrix notation is again useful to represent
the necessary summations:

�W = (F1X ; F1Y ; F2X ; � � � )

8>>>>>><>>>>>>:

�X1

�Y1

�X2

...

9>>>>>>=>>>>>>;

= (F1X ; F1Y ; F2X ; � � � )

26666666664

K1X1 K1X2 K1X3 � � �

K1Y 1 K1Y 2 K1Y 3 � � �

K2X1 K2X2 K2X3 � � �

K2Y 1 K2Y 2 K2Y 3 � � �
...

...
...

. . .

37777777775

8>>>>>><>>>>>>:

�q1

�q2

�q3
...

9>>>>>>=>>>>>>;

= (Q1; Q2; Q3; : : :)

8>>>>>><>>>>>>:

�q1

�q2

�q3
...

9>>>>>>=>>>>>>;
(6.79)

where 8>>>>>><>>>>>>:

Q1

Q2

Q3
...

9>>>>>>=>>>>>>;
=

26666666664

K1X1 K1X2 K1X3 � � �

K1Y 1 K1Y 2 K1Y 3 � � �

K2X1 K2X2 K2X3 � � �

K2Y 1 K2Y 2 K2Y 3 � � �
...

...
...

. . .

37777777775

T 8>>>>>><>>>>>>:

F1X

F1Y

F2X
...

9>>>>>>=>>>>>>;
(6.80)
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This last product de�nes the generalized forces associated with each of the generalized
coordinates. The usual terminology is to speak of the generalized force conjugate to a
particular generalized coordinate, because neither the generalized force nor the general-
ized coordinate has a direction in the vectorial sense. With this de�nition, the virtual
work is written as fQgT f�qg. Because the generalized coordinates are independent and
their variations are completely arbitrary, the vanishing of the virtual work requires the
vanishing of each of the generalized forces. This is directly parallel to Newton�s First
Law, but it is a more general statement. It does, however, help to focus attention on the
generalized forces as the cause of equilibrium or, in the dynamic situation, as the cause
of nonequilibrium.

Velocity coe¢ cients play a very important role in the de�nition of the generalized force.
For a large, complicated problem, it may be very useful to evaluate the generalized forces
using the matrix product as indicated, while for less complex problems, a less formal
approach may be useful. In either event, the expression for the generalized force should
be a sum of terms, with each term the product of a velocity coe¢ cient with an actual
force or moment.

6.6 Conclusion

The Principle of Virtual Work is a very powerful tool that has been frequently slighted in
recent years. This approach makes possible omitting all internal forces and nonworking
external constraint forces in the problem formulation, which is a great advantage in the
area of machinery statics. The generalized coordinate and velocity coe¢ cient concepts
are employed again in this chapter, as they will be in Chapters 7 and 8. The velocity
coe¢ cient concept facilitates the application of the Principle of Virtual Work, because
it neatly connects the virtual displacement at the point of application of a force to
the virtual changes in the generalized coordinates. The idea of generalized force follows
naturally from the expression of virtual work in terms of virtual changes in the generalized
coordinates.
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Problems

6-1 The �gure shows a pulley and cable system supporting two blocks of equal weight.
The system is assumed to be without friction at any point. All the dimensions, weights,
mass moments of inertia, are known. The cable has mass per unit length m (kg/m). It
should be obvious that the system is in equilibrium in the con�guration shown. Consider
a small downward displacement of the block on the right.

(a) Is the system stable?

(b) What is the critical parameter?

(c) What common assumption would change the system stability if it could be imple-
mented?

(d) With that assumption, what is the system stability?

Figure 6.11: System in Equilibrium

6-2 The �gure shows a top view of a mechanism called Raphson�s Slide. It is most often
used to control the rudder on large, ocean-going ships. In such vessels, the rudder post is
a very large shaft passing vertically down through the ship and supporting the rudder on
the lower end. The ship is steered by turning the rudder which requires that the rudder
post be rotated. The action of the water, and possible collisions with �oating objects,
can produce large, sudden torques on the rudder post, making it di¢ cult to maintain the
rudder position2. Raphson�s slide is a mechanism for implementing hydraulic control of
the rudder angle. The hydraulic cylinder is double acting which means that it can exert
force in either direction, a requirement that may change quite rapidly with each passing
wave. When the piston is centered, q = 0, the rudder angle � = 0. The distance C is

2Raphson�s slide has a structural advantage that is not entirely obvious. Because the hydraulic
cylinder is stationary, it can be supported over a relatively large area. Large ships are built somewhat
like boxes, and while very strong when a load is distributed over the whole structure, they are not
designed to take large point loads, such as would be the result of a pivoted hydraulic cylinder.
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known, as are the e¤ective piston areas A1 and A2 and the cylinder pressures P1 and P2.
The torque Tr is externally applied to the rudder. Take the piston position, q, as the
primary variable. Determine the equilibrium value of Tr in terms of the q; C; A1; A2; P1;
and P2.

6-3 The mechanism shown is an air-actuated press that moves upward for the working
stroke. The crank is de�ned by the three side lengths s1; s2; and s3. Air is supplied to
the cylinder at a constant pressure Po and the e¤ective piston area is Ao,.The working
force reaction on the ram is F . The support location values xo and yo are known.

(a) Set up the equations for a complete position analysis (do not solve);

(b) Assuming that the position solutions have been determined, develop the matrix equa-
tions required to determine the velocity coe¢ cients (do not solve);

(c) With the positions and velocity coe¢ cients all assumed to be known, express the
static working force F in terms of Po; Ao; q and the various dimensions.

6-4 For the system of problem 6-3, the piston stroke is such that 350 mm� q � 475 mm.
Use the data below as needed to make calculations and a plot at 101 positions over the
length of the piston stroke:

(a) Numerically solve the position loop equations at each position;

(b) Compute the velocity coe¢ cients at each position;

(c) Plot the equilibrium value of the working force F versus q.

s1 = 280 mm s2 = 450 mm s3 = 620 mm

xo = 750 mm yo = 508 mm L = 800 mm

Po = 4 � 105 Pa Ao = 0:0025 m2
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6-5 The �gure shows a mobile rocket launch system. In the upper view (a), the rocket
is horizontal. In that position, the weight of the rocket and the launch platform are
supported by the �xed support post at the left and the pin connection at the right. In
the lower view (b), the rocket is shown in an elevated position, ready to launch. It should
be evident from the �gures that the elevation is accomplished by extending the single
acting hydraulic cylinder shown. The angles A and B are to be determined. Let q denote
the length of the single acting hydraulic cylinder assembly (pin-to-pin). The known data
includes all of the dimensions in the table below, where M is the combined mass of the
rocket and support platform. The hydraulic piston diameter is dp = 60 mm.

c1 = 1455 mm c2 = 257 mm c3 = 2052 mm

c4 = 955 mm c5 = 3112 mm M = 1537 kg

(a) What is the value of A when the rocket is in the horizontal (down) position?

(b) What is the value of q when the rocket is in the horizontal (down) position?

(c) What value of q is required to make the launch angle, B, equal to 45o?

(d) What is the minimum pressure required to lift the launch assembly o¤ the forward
support?

(e) What is the pressure required in the hydraulic cylinder to raise the rocket and launcher
to B = 45o?

(f) Make a plot of launch angle B as a function of the cylinder pressure, P:
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6-6 The two slabs shown are separated by rollers that do not slip at any location. In the
upper view, the springs of the system are fully relaxed; in the lower view, the system is
under the two applied loads F1 and F2. The free length values S1o and S2o are known.
The larger rollers (between the two slabs) have radius R; while the smaller rollers (below
the lower platform) have radius r.

(a) For given values of F1 and F2, determine equilibrium equations solvable for q1 and q2
(do not solve);

(b) Using the data below, evaluate q1 and q2 numerically for the case F1 = 75 N and
F2 = 50 N.

K1 = 3500 N/m S1o = 100 mm R = 188 mm

K2 = 1400 N/m S2o = 150 mm r = 9 mm
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6-7 The system shown here is exactly the same as that in Problem 6-6, except that
the support is now inclined by the angle � = 17o. Much of the system data is given in
the previous problem and applies here as well. In addition, note that M1 = 12 kg and
M2 = 9:7 kg, and �nally, there are three large rollers, and the mass of each isMR = 0:385
kg, while the masses of the small rollers can be neglected.

(a) For given values of F1 and F2, determine equilibrium equations solvable for q1 and q2
(do not solve);

(b) Using the data below, evaluate q1 and q2 numerically for the case F1 = 75 N and
F2 = 50 N.

6-8 In the �gure, the actual system of interest is the upper structure, (a). As shown
in (a), the system is a structure, not a machine or mechanism; it has zero degrees of
freedom. Notice that two of the components involve �xed right-angle elements. For an
applied load F = 100 N, the concern is to calculate the reaction at the wall, R. Because
the structure cannot move, it is often di¢ cult to see how the method of virtual work can
be applied to calculate R.

It is often useful to relax one of the constraints, thus allowing the system the possibility
of motion; this is done in (b). That system has one degree of freedom, and thus the piston
at the lower right can move in response to the applied load F . It is then only necessary
to �x the value of x at its proper initial value to be fully equivalent to the structure in
(a). Use this approach to employ the method of virtual work to calculate the reaction
force, R. Take � as the primary variable to be associated with the one degree of freedom
resulting from the relaxed constraint.

a = 1:00 m b = 4:00 m c = 3:00 m

d = 2:23 m e = 1:00 m

6-9 The system shown is in equilibrium under the applied horizontal force, F as resisted
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by the torsion spring; there is no gravity to be considered. The spring rate is K; and the
spring is relaxed when the angle between the legs (A) is zero.

(a) Establish the equilibrium equation(s) and the kinematic position equations that must
be solved to determine the equilibrium con�guration ;

(b) Using the data below, determine the equilibrium values for X and � when F = 380
N.

L1 = 2425 mm L2 = 1775 mm

C = 235 mm Kt = 655 N-m/rad

6-10 The system shown has two degrees of freedom described by the generalized coordi-
nates q1 and q2: The system is in equilibrium under the loads F1; F2, Fx; and Fy. The
lengths L1 and L2 are known, as are the angle C and the loads Fx and Fy.
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(a) Develop any necessary kinematic analysis in symbolic form;

(b) Develop a system of equations solvable for A and B (do not solve);

(c) Develop expressions for any variations that are required for the application of the
principle of virtual work;

(d) Using the data values given below, solve numerically for the equilibrium values of A;
B, F1 and F2.

q1 = 3100 mm q2 = 2200 mm Fx = 100 N Fy = 50 N

L1 = 3100 mm L2 = 3200 mm C = 53o

6-11 The system shown is in equilibrium under the force F and the applied torque T .
The spring rate is K, and the free length of the spring is such that it is relaxed when
y = � = 0. All of the dimensional values (A; C, D; E, R) are known.

(a) Set up all of the equations required for a complete position analysis for assigned
values of y and �;

(b) Develop expressions for all variations required for the application of the principle of
virtual work;

(c) Use the principle of virtual work to write equations solvable for the position variables
for assigned values of F and T (do not solve).

6-12 The spring-lever system is in equilibrium under the action of the force F ; there is
no gravity to consider in this problem. The dimensions A; B, C and D; and the spring
rate K are all known. The free length of the spring is Lo.

(a) Use loop equations to determine the no-load value for �;
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(b) Consider the load to slowly increase from zero to 5 � 106 N. As the load increases,
the angle � will slowly increase from the no-load value. What value does the angle �
approach asymptotically?

(c) Plot the angle � as a function of the load F over the range 0 � F � 5 � 106 N.

(d) As F and � increases beyond F = 2 � 106 N,

(1) What is happening to the load in the spring?

(2) What is happening to the load in the lever?

A = 151 mm C = 250 mm D = 50 mm

K = 14000 � 103 N/m Lo = 286 mm R = 459 mm
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6-13 Return to the geometry of Problem 6-12 and consider particularly the e¤ect of
reducing the height of the spring anchor, the distance D.

(a) Make plots of the equilibrium angle � as a function of the applied force F over the
same range used previously for D = 30; 10, 1 and 0 mm.

(b) For all cases, the curves appear to cross each other near F = 1 � 106 N. Describe in
words the signi�cance of this apparent crossing.

(c) As D is reduced, the curves move toward a "shoulder," that eventually becomes a
sharp corner when D = 0. Describe in words what happens to the internal loads at that
corner and beyond.

6-14 Consider again the air powered press of problems 2-20 and 2-21. All system
data given previously and previously developed analysis apply to this problem as well.
It should be recognized that this system only moves very slowly and is thus always
approximately in equilibrium.

(a) Use the method of virtual work to calculate the equilibrium value of the tool force at
each position;

(b) Plot the equilibrium value of the tool force as a function of the piston position,
F = F (q) ;

(c) Plot the equilibrium value of the tool force as a function of the tool position, F =
F (S).

6-15 Return again to the geometry of Problem 6-12, this time with a small modi�cation.
Now, instead of the �xed length for the lever (R), the lever length is variable since the
lower end is slotted, rather than pinned at the support point. The extension of the lever
is restrained by a spring with sti¤ness K2 � K1; this spring can operate in either tension
and compression. The e¤ective length of K2 is L2 = R�A. Note also that the dimension
A is rede�ned, as compared to Problem 6-12. The e¤ect of the slotted lever is to add
another degree of freedom to the problem, so that the preferred generalized variables are
R and �.

(a) Formulate all the necessary kinematic relations for this problem with R and � as the
generalized variables and F as an input value;

(b) Formulate the virtual work relations that describe the static equilibrium position;

(c) Using the data below, solve the equilibrium relations for value of F in the range
0 � F � 5 � 106 N;

(d) Keeping in mind the idea that K2 � K1, describe in words how this problem a

Mechanics of Machines c 2019 Samuel Doughty



226 Chapter 6 Problems

generalization of the problem previously considered in Problem 6-12?

(e) What do you notice about the internal loads in the two springs? What happens when
the applied load exceeds 2 � 106 N?

A = 151 mm C = 250 mm D = 50 mm

K1 = 1:4 � 107 N/m L1o = 286 mm K2 = K1 � 104 N/m L2o = 308 mm
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Chapter 7

SDOF Machine Dynamics

7.1 Introduction

Dynamics is the science of physical systems in motion, consisting of kinematics and ki-
netics. The term kinetics refers to the study of motion taking into account the forces
causing the motion. This chapter focuses on the kinetics of systems having only a sin-
gle degree of freedom. Although this is a somewhat special class, the large number of
useful single degree of freedom mechanisms justify separate consideration. The kinetics
of multiple degree of freedom systems is considered in Chapter 8. The signi�cance of
kinematics in the study of dynamics cannot be overestimated; the material of Chapters
2 and 3 is essential to the study of Chapters 7 and 8.

7.2 Kinetic Energy of Rigid Bodies

In all cases, the kinetic energy of a single rigid body can be separated into two terms,
one that depends on the velocity of the center of mass and the other that depends
on the angular velocity of the body. For a review of this development, see Appendix
6. Mechanism problems typically involve multiple rigid body components, for which the
total kinetic energy is simply the sum of the kinetic energies of the individual components.
Thus, for such a system the kinetic energy may be written as

T =
1

2
M1 (V1c) fV1cg+

1

2
(!1) [J1c] f!1g

+
1

2
M2 (V2c) fV2cg+

1

2
(!2) [J2c] f!2g+ � � � (7.1)

where fV1cg, fV2cg, . . . f!1g, f!2g, . . . and so forth are translational and angular velocity
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components measured in an inertial coordinate system. Now, let all of the center of mass
velocity components for the various mechanism elements be assembled into a column
vector. Similarly, assemble all of the angular velocity components for the several parts
as a second column vector. The results are

fVcg = col (V1x; V1y; V1z; V2x; V2y; V2z + � � � ) (7.2)

f!g = col (!1x; !1y; !1z; !2x; !2y; !2z; � � � ) (7.3)

Then, with the appropriate de�nitions for the mass matrix [M ] and the center of mass
moment of inertia matrix [Jc], the system total kinetic energy is written as

T =
1

2
fVcgT [M ] fVcg+

1

2
f!gT [Jc] f!g (7.4)

For most single degree of freedom system, the vectors fVcg and f!g can be written in
terms of the generalized velocity, _�, and a vector of the appropriate velocity coe¢ cients:

fVcg = _� fKV (�)g (7.5)

f!g = _� fK! (�)g (7.6)

With these de�nitions, the entire kinetic energy can be written in terms of � and _�:

T =
1

2
_�
2
�
fKV (�)gT [M ] fKV (�)g+ fK! (�)gT [Jc] fK! (�)g

�
(7.7)

By analogy with the expression for the kinetic energy of a single particle, the coe¢ cient of
1
2
_�
2
is called the generalized inertia, a scalar quantity. Because the velocity coe¢ cients are

usually functions of the generalized coordinate, �, the generalized inertia is also expected
to be a function of �. There is no universal notation for the generalized inertia; the
notation I (�) or simply, I, is used here.

A word of caution is required at this point. There are single degree of freedom
systems with base displacement excitations, say an Xo (t), for which the velocity required

to express the kinetic energy is of the form
�
_Xo + _�KV

�
. In this case, the de�nition

of the generalized inertia described above is not useful and the following
discussion is not valid. The problem develops because, in that circumstance, the term
_�KV describes a relative velocity, rather than a velocity measured with respect to an
inertial coordinate system. All such systems are here excluded from the discussions of
this chapter; they are handled by the methods of Chapter 8.

To illustrate the idea of generalized inertia, consider the slider-crank mechanism shown
in Figure 7.1 (for which the kinematics were studied in Section 2.4). Let M2 and M3

denote the masses of the connecting rod and the slider, respectively, while I1c and I2c
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Figure 7.1: Slider-Crank Mechanism

are the mass moments of inertia for the crank and the connecting rod, each with respect
to the component center of mass. The connecting rod center of mass is located by the
body coordinates (u2c; v2c) from which the base coordinates (x2c; y2c) are determined.
Similarly, consider a body coordinate system (U1; V1) on the crank having its origin at
the crank pivot. In this body coordinate system, the crank center of mass is located at
(u1c; v1c) : The kinetic energy of the assembly is

T = TCrank + TConRod + TSlider

=
1

2
M1V

2
1c +

1

2
J1c�

2 Crank

+
1

2
M2

�
_x22c + _y22c

�
+
1

2
J2c _�

2
Con Rod

+
1

2
M3 _x

2
3c Slider

=
1

2
_�
2
M1

�
K2
1x +K2

1y

�
+
1

2
_�
2
J1c

+
1

2
_�
2
M2

�
K2
cx +K2

2y

�
+
1

2
_�
2
J2cK

2
�

+
1

2
_�
2
M3K

2
x

=
1

2
_�
2
[M1

�
K2
1x +K2

1y

�
+ J1c

+M2

�
K2
cx +K2

2y

�
+ J2cK

2
� +M3K

2
x]

=
1

2
_�
2 �
J1o +M2

�
K2
cx +K2

2y

�
+ J2cK

2
� +M3K

2
x

�
(7.8)

In the last step above, the parallel axis theorem is employed to combine the two terms
M1

�
K2
1x +K2

1y

�
+ I1c into the single term J1o, the mass moment of inertia of the crank

with respect to the axis of rotation. This is to be expected for a body rotating about
a �xed center. No similar simpli�cation is possible for the connecting rod terms; the
connecting rod does not rotate about a �xed center. As described above, the generalized
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inertia for the slider-crank mechanism is the coe¢ cient of 1
2
�2. The generalized inertia

is clearly dependent on � and, in fact, oscillates about a non-zero mean value with two
maxima and two minima for each crank revolution.

I (�) = J1o +M2

�
K2
cx +K2

2y

�
+ J2cK

2
� +M3K

2
x (7.9)

7.3 Generalized Forces

All of the forces and couples that work on the system in�uence its dynamic response.
In Section 6.2, the generalized forces associated with both single and multiple degrees
of freedom were developed; the single degree of freedom case is reviewed brie�y here.
The objective of this section is to determine a single generalized force that, when acting
through a virtual coordinate change ��, will do virtual work �W = Q�� equal to the sum
of the virtual work of the actual forces and moments moving through their associated
virtual displacements. Consider external forces Fi applied at locations de�ned by the
position vectors ri, and similarly, couples Cj acting on angles Aj The virtual work of this
force system is

�W =
X
i

Fi � �ri +
X
j

Cj � �Aj (7.10)

All the positions are functions of the single generalized coordinate, �, so the virtual
displacements can be written in terms of the virtual change in �:

�ri =
@ri
@�

�� (7.11)

�Aj =
@Aj

@�
�� (7.12)

When these expressions are applied in the virtual work expression, the result is

�W = ��

 X
i

Fi �
@ri
@�

+
X
j

@Aj

@�
� �Aj

!
(7.13)

The coe¢ cient of �� is the generalized force,

Q =
X
i

Fi �
@ri
@�

+
X
j

@Aj

@�
� �Aj (7.14)

Although this looks formidable, the actual determination of the generalized force is usu-
ally quite simple. To continue with the illustration involving the slider-crank mechanism,
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Figure 7.1 shows a couple C (t) acting on the crank and a force F (t) acting on the slider.
These are the only two external forces that do work on the system. Other external forces,
such as the bearing reactions or the transverse reaction on the slider, do no work and
need not be included. The virtual work of this force system is

�W = C (t) �� + F (t) �x

= �� [C (t) + F (t)Kx] (7.15)

with the result that the generalized force is

Q = C (t) + F (t)Kx (7.16)

Notice the role of the velocity coe¢ cient, Kx. Why is there no velocity coe¢ cient factor
written with C (t)?

7.4 Eksergian�s Equation of Motion

One of the theorems regularly established in introductory dynamics courses states that
the work done on a mechanical system is equal to the change in kinetic energy of the
system. For application here, that statement is considered in di¤erentiated form:

Power(into the system) =
d

dt
(Kinetic Energy) (7.17)

For a single degree of freedom system, the power into the system is

Power =
X
i

�
Fix _xi + Fiy _y +Mi

_Ai

�
= _�

X
i

(FixKix + FiyKiy +MiKAi)

= Q � _� (7.18)

while the kinetic energy is

T =
1

2
I (�) _�2 (7.19)

Di¤erentiating the kinetic energy with respect to time and equating this result to the
power expression gives

dT

dt
=
1

2

dI (�)
d�

d�

dt
_�
2
+ I (�) _� �� = Q _� (7.20)
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Eliminating the common factor _� gives Eksergian�s form for the equation of motion of a
single degree of freedom system:

I (�) �� +
1

2

dI (�)
d�

_�
2
= Q (7.21)

This, then, is the generalized equation of motion applicable to all single degree of freedom
systems of the type considered in this chapter. This form for the equation of motion,
and also the ideas of velocity coe¢ cients and velocity coe¢ cient derivatives, were used
repeatedly by Eksergian in a series of papers on machinery dynamics [1]1. If the general-
ized inertia is constant, the equation of motion reduces to the familiar Newton�s Second
Law statement: force = inertia � acceleration. For varying generalized inertia, the sec-
ond term, known as the centripetal term, must also be included. The coe¢ cient in the
centripetal term, 1

2
dI=d�, is given the symbol C (�) and called the centripetal coe¢ cient.

With this notation, Eksergian�s form for the equation of motion is

I (�) �� + C (�) _�2 = Q (7.22)

To apply Eksergian�s equation of motion to the slider-crank mechanism considered earlier,
it is necessary to determine the generalized inertia, I (�). From above, the generalized
inertia is

I (�) = J1o +M2

�
K2
2cx +K2

2cy

�
+ J2cK

2
� +M3K

2
x (7.23)

Di¤erentiation with respect to � gives the centripetal coe¢ cient, C(�):

C (�) =M2 (K2cxL2cx +K2cyL2cy) + J2cK�L� +M3KxLx (7.24)

Using these expressions in Eksergian�s equation of motion, along with the generalized
force previously identi�ed, gives the equation of motion for the slider-crank mechanism:

J1o +M2

�
K2
2cx +K2

2cy

�
+ J2cK

2
� +M3K

2
x

+ [M2 (K2cxL2cx +K2cyL2cy) + J2cK�L� +M3KxLx] _�
2

= C (t) + F (t)Kx (7.25)

This is an extremely complex nonlinear di¤erential equation with variable coe¢ cients,
so there is little prospect of an analytical solution. There is, however, every reason to
expect that a numerical solution can be obtained, and that matter is taken up later in
this chapter.

1 Eksergian seems to have been the �rst to present this equation of motion in an English-language
publication, but it had appeared previously in the German literature. His work was far ahead of his
time, and is only now practical because of the general availability of digital computers.
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7.5 Potential Energy

There is an alternative to including conservative forces in the generalized force. A poten-
tial energy term can be included in Eksergian�s equation of motion to account for them,
while the nonconservative forces continue to be included in the generalized force. This
modi�cation is developed here; a parallel development was given for statics in Section
6.2.

Let the force acting on the system at point ri consist of two parts, one part conservative
and the other nonconservative. The conservative force can be written as the negative
gradient of its associated potential function. Thus, any force can be written as

Fi = Fci + F
nc
i

= �rVi + Fnci (7.26)

If this form is used to determine the generalized force, that result also consists of two
terms:

Q =
X
i

Fi �
dri
d�

=
X
i

(�rVi + Fnci ) �
dri
d�

= �
X dVi

d�
+
X
i

Fnci �
dri
d�

= �dV
d�
+Qnc (7.27)

Note that V with no subscript is used for the total potential energy of the system, while
Qnc is the total nonconservative generalized force. With this result applied to Eksergian�s
equation, and the potential energy term shifted to the left side, the modi�ed form is

I (�) �� + C (�) _�2 +
dV

d�
= Qnc (7.28)

This modi�ed form is particularly useful in cases that involve springs that of change
direction as well as length as the mechanism moves. For such situations, expressing
the potential energy of the spring in a typical position, and then including its e¤ect
through the indicated potential energy term is relatively simple. Direct inclusion in the
generalized force term is also possible, although often more di¢ cult.

Continuing with the slider-crank example used previously, let the force on the slider be
replaced by a spring and dashpot arrangement as shown in Figure 7.2. The free length
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Figure 7.2: Slider-Crank Mechanism With Spring-Dashpot Assembly Added

of the spring is so. The potential energy of the spring is then

V =
1

2
K (xo � x� so)

2 (7.29)

with the derivative
dV

d�
= �K (xo � x� so)Kx (7.30)

To include the dashpot and the time-dependent couple, the nonconservative virtual work
is determined as follows:

�W nc = �B _x �x+ C (t) ��

= �B (�Kx) (Kx ��) + C (t) ��

=
�
�BK2

x + C (t)
�
��

Qnc = �BK2
x + C (t) (7.31)

Note that time-dependent external forces are necessarily nonconservative, and therefore
must always enter through Qnc. With these modi�cations, the equation of motion for
the system is

I (�) �� + C (�) _�2 �KKx (xo � x� so) = �BK2
x
_� + C (t) (7.32)

where the expressions for I (�) and C (�) remain as previously determined.

7.6 Mechanism Simulation

The di¤erential equation that describes the motion of a single degree of freedom mech-
anism is often quite formidable because in most cases it is nonlinear with variable coef-
�cients. Such equations are generally not solvable in closed form, but they are usually
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amenable to numerical solution. The Runge-Kutta method is one numerical solution
technique that usually gives good results for mechanism problems. It is presented in
Appendix 3, with the particular form applicable to a single, second-order di¤erential
equation given in Appendix A3.1. That Appendix should be reviewed for details of the
Runge-Kutta method; the present section addresses its implementation in a computer
program. The resulting program is often referred to as a simulation, because the calcula-
tions performed in the program simulate, or behave like, the physical system from which
the di¤erential equation was derived.

The essential parts of any simulation program are

1. Initialization

2. Iterative advancement of the solution

a. Evaluation of derivatives

b. Determination of new solution values

c. Recording of new solution values

d. Testing for termination

In the initialization phase, all initial values are either set internally or entered from
the keyboard. The time is usually initialized to zero internally, although this is not
mandatory (any desired starting time can be used). The initial conditions, �(0) and _�(0),
are entered from the keyboard if they are to be changed from one execution to the next;
if not, they are often set internally as well. The constant parameters of the problem such
as lengths, masses, and moments of inertia are also set in this phase.

Some type of termination criterion must be established and any parameters associated
with that criterion (such as a maximum time) should be set during the initialization. As
a �nal step, column headings should be printed and the initial conditions recorded as the
�rst entries in the tabulated solution. Standard practice is to program the evaluation of
the second derivative as a subroutine, often using other subroutines for the kinematics
and other repeated calculations. This is then called with the appropriate argument sets
for each of the four derivative evaluations required by the Runge-Kutta algorithm.

To be speci�c, consider a simulation program for the system described by the di¤erential
equation

�� = f
�
t; �; _�

�
(7.33)

When the second derivative subroutine is written, the variables used could be named t,
th, and dth for t, �, and _�. Then, in the main program, the variable names might be ts,
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ths, and dths, where the �nal s denotes saved values of t, �, and _�. Before calling the
subroutine to evaluate the derivative, the appropriate values must be assigned for t, th,
and dth. For the �rst evaluation, this is simply

t = ts

th = ths

dth = dths

For the second evaluation, the appropriate values are

t = ts + h/2

th = ths + h*dths/2 + h*kl/8

dth =dths + kl/2

where kl is determined from the �rst evaluation of the derivative. This is further illus-
trated in the examples in Section 7.6. After four evaluations of the derivative, each with
di¤erent values assigned for t; �; and _�, new values of the solution are calculated or, as
it is sometimes phrased, the solution is "updated." In addition to updating the values
for ths and dths, it is also necessary to update the time, ts. For the simplest type
of simulation, the results are printed at every time step. Thus, after every update, the
new results are printed. If very small time steps are required for solution accuracy, it
may be desirable to print less frequently, perhaps every 10 steps. If this is required, the
process of advancing the solution will involve two nested loops or a print cycle counter.
The printed results usually include the values for t, �, and �, but any desired additional
quantities such as forces, stresses, relative displacements, or relative velocities can also
be evaluated and printed at each output time.

It is always necessary to provide some means to end the simulation program. This
can be done in several ways, one of the most common being to end after a �xed time
interval has been simulated. Other termination criteria may be based on the occurrence
of some speci�ed event, such as when the solution is greater than a prescribed value. For
any such criterion, a test is needed to terminate the execution, usually in the form of
an IF-statement test following each output sequence. Failure to include an achievable
termination criterion causes the simulation to run until the operator intervenes; that is
a wasteful approach. The term achievable termination criterion refers to an event that
actually occurs at some time in the solution, as opposed to a criterion de�ned by an
event that never occurs and hence, would allow the solution to run inde�nitely. If the
termination criterion is not met, control is transferred to the beginning of the loop to
move forward another time step.

These steps are illustrated in the example problems given in the next section. The
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reader should locate each of these steps in the computer program and trace the sequence
of calculations.

Figure 7.3: Runge-Kutta Flow Chart

7.7 Mechanism Simulation Examples

This section presents three examples of mechanism simulation using the Runge-Kutta
integration algorithm and other ideas discussed in the preceding sections. Each example
begins with a problem statement and formulation, followed by computer program results.

7.7.1 Rocker Response

This problem involves the dynamic response of the curved rocker as shown
in Figure 7.4 to an impulsive force F (t) applied at point (A); this problem
is, in some respects, similar to the statics example problem involving an L-
shaped bracket given in Section 6.3. For the current problem, the rocker is
constrained to roll without slipping on the circular support, under the in�u-
ence of the impulsive applied load, F (t), and a spring and dashpot assembly
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Figure 7.4: Rocker System Diagram

attached at point (B). The spring and dashpot assembly is anchored at point
(D). Point (D) is 50 mm directly below point (B) when � = 0, and the
spring-damper assembly is fully relaxed in that position.
The rocker support has a radius R = 44:50 mm. The rocker material

is steel plate, thickness t = 21 mm, with a density � = 7800:6 kg/m3. For
the restraining spring, the spring rate is K = 3500 N/m and the dashpot
coe¢ cient is C = 100 N-s/m. The applied force is a single rectangular pulse
acting horizontally to the left; its magnitude is 200 N lasting for a duration
of 0:005 second. The system is initially at rest in an upright position, with
the U�axis aligned with the X�axis, the V�axis parallel to the Y�axis, and
supported by a stop (not shown) when the impulsive load is �rst applied.
The two primary objectives for this simulation are:
1. Determining the maximum excursion of the rocker;
2. Determining the rocker �nal velocity as it returns to the stop.

7.7.1.1 Mass Properties

The rocker geometry is shown in Figure 7.5 on a 10mm grid, and the rocker thickness is 21
mm. Note that the origin of the body coordinate system is the center of the inside radius
at the level of the beginning of the arc (below that point, the pro�le is straight). This
coordinate system choice is made because of the circular form of the body boundary, most
easily expressed with this choice. Using the Planar Area Program.Tru of Appendix
4, the following properties are determined for the rocker; this is carried out in detail in

Mechanics of Machines c 2019 Samuel Doughty



7.7. MECHANISM SIMULATION EXAMPLES 239

Figure 7.5: Rocker Geometry on a 10 mm Grid (all dimensions in millimeters)

Appendix 4 as a demonstration of the application of that program.

The essential results are summarized here:

M = 0:82637 kg

uc = 0:09188 m

vc = 0:02331 m

Jc = 1:10864 � 10�3 kg-m2

The other important data required is the location of the several attachment points. These
are

uA = +0:035795 m vA = +0:072885 m

uB = +0:115676 m vB = �0:036593 m

xD = +0:083976 m yD = �0:086593 m

This completes all of the required geometrical and inertial data for this example.
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7.7.1.2 Kinematics

For the formulation of any problem of this sort, the place to begin is always with the
kinematics. Since this problem has not been considered previously, the necessary kine-
matic relations are developed here. The essential fact that must be grasped �rst is that
the center of the rocker contact arc (the origin of the body coordinate system) moves
in a circle of radius R � r about the center of the �xed support. This means that both
centers, that of the rocker contact arc and that of the �xed support, must lie on the
common normal to the tangent line at the point of contact. Referring to Figure 7.4, it is
then evident that the rolling constraint relation is simply

R� = r� (7.34)

This is simply a statement that the contact arc on the rocker is equal to the contact arc
on the �xed support.

The simulation is to be formulated in terms of the rocker contact angle, �, but note that
� is not the rotation of the rocker. The rotation of the rocker is the angle �, and from
simple geometry it is evident that

� = �+ � (7.35)

Putting this altogether, it is a simple matter to express � in terms of �

� = � (1� r=R) (7.36)

Then the velocity coe¢ cient and velocity coe¢ cient derivative for � are

K� = 1� r=R (7.37)

L� = 0 (7.38)

Next, consider any point P in the rocker with body coordinates (up; vp) ; it will be nec-
essary to eventually consider points A; B; and the center of mass, but one general for-
mulation is su¢ cient for all. The global (base) coordinates for such a point are

xp = up cos [(1� r=R)�]� vp sin [(1� r=R)�]� (R� r) cos � (7.39)

vp = up sin [(1� r=R)�] + vp cos [(1� r=R)�]� (R� r) sin � (7.40)

Then taking derivatives with respect to � produces the velocity coe¢ cients and velocity
coe¢ cient derivatives

Kpx = �up (1� r=R) sin [(1� r=R)�]

�vp (1� r=R) cos [(1� r=R)�] + (R� r) sin � (7.41)

Kpy = up (1� r=R) cos [(1� r=R)�]

�vp (1� r=R) sin [(1� r=R)�]� (R� r) cos � (7.42)
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Lpx = �up (1� r=R)2 cos [(1� r=R)�]

+vp (1� r=R)2 sin [(1� r=R)�] + (R� r) cos � (7.43)

Lpy = �up (1� r=R)2 sin [(1� r=R)�]

�vp (1� r=R)2 cos [(1� r=R)�] + (R� r) sin � (7.44)

As noted above, these results are su¢ cient to describe the motions for points A, B, and
the center of mass.

The e¤ects of the spring and dashpot assembly are dependent on the length of that
assembly, denoted as S, and the time derivative, _S. The length is

S (�) =

q
(xB � xD)

2 + (yB � yD)
2 (7.45)

With the usual di¤erentiation, the velocity coe¢ cient KS is determined:

KS =
(xB � xD)

S (�)
KBx +

(yB � yD)

S (�)
KBy (7.46)

7.7.1.3 Equation of Motion

To apply Eksergian�s form of the equation of motion, the kinetic energy is required. This
can be expressed as the sum of terms dependent on translational and rotational velocities:

T =
1

2
M
�
_x2c + _y2c

�
+
1

2
Jc _�

2

=
1

2
_�
2 �
M
�
K2
cx +K2

cy

�
+ JcK

2
�

�
(7.47)

From the kinetic energy, the generalized inertia is readily identi�ed as the coe¢ cient of
1
2
_�
2
:

I (�) =
�
M
�
K2
cx +K2

cy

�
+ JcK

2
�

�
(7.48)

Because the generalized inertia is not constant, there is a non-zero centripetal coe¢ cient:

C (�) =M (KcxLcx +KcyLcy) (7.49)
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The term JcK�L� is dropped because L� = 0:

For this example, the e¤ect of the spring is included through a potential energy term.
The potential energy of the stretched spring is

V =
1

2
K [S (�)� So]

2 (7.50)

with the derivative
dV

d�
= K [S (�)� So]KS (7.51)

The �nal step in preparation for writing the equation of motion is to determine the
nonconservative generalized force. The nonconservative virtual work is

�W nc = �F (t) �xA � C _S �S

= �
h
F (t)KAx + _�CK

2
S

i
�� (7.52)

from which the nonconservative generalized force is

Qnc = �
h
F (t)KAx + _�CK

2
S

i
(7.53)

The equation of motion is then obtained by applying Eksergian�s form for the equation
of motion:

I (�) �� + C (�) _�2 +
dV

d�
= Qnc (7.54)

where expressions have been obtained previously for I (�), C (�), V , and Qnc for this
problem. For use in the numerical solution, it is necessary to solve the equation of
motion for the second derivative:

�� =
1

I (�)

�
Qnc � C (�) _�2 � dV

d�

�
(7.55)

The foregoing analysis is the basis for the computer program that follows below. The
�rst part of the program contains the initialization phase, the Runge-Kutta loop, and
provisions for plotting and printing the results.

7.7.1.4 Program Listing for RckrDyn3.Tru

The program listing for the rocker simulation follows below. The reader should remember
that the line numbers are entirely optional and may be dropped without a¤ecting the
operation of the program in anyway. They are included simply for easy reference to
speci�c parts of the program.
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101 ! RckrDyn3.Tru
102 ! Rocker Dynamics Calcs
103 ! This code is the actual simulation.
104 OPTION NOLET
105 OPTION BASE 1
106 LIBRARY "c:\tb305\true \tblibs \graphlib.tru"
107 DIM tsav(1500),thsav(1500),dthsav(1500),fsav(1500)
108 CLEAR
109 ! System Data
110 rho=7800.6 ! mat�l density, kg/m^3
111 t=0.021 ! thickness, m
112 capR=0.07620 ! rocker rolling radius
113 rr=0.04450 ! support radius
114 ua=35.795*10^(-3) ! force application point
115 va=72.885*10^(-3)
116 ub=115.676*10^(-3) ! spring/damper attachment location
117 vb=-36.593*10^(-3)
118 xd=ub-(capR-rr) ! spring/damper anchor location
119 yd=vb-0.050
120 area=5044.5897*10^(-6) ! area, m^2
121 uc=91.878694*10^(-3) ! uc, m
122 vc=23.306225*10^(-3) ! vc, m
123 Iuu=7.4286318*10^6*10^(-12) ! Iuu, m^4
124 Ivv=4.4664111*10^7*10^(-12) ! Ivv, m^4
125 Iuuc=Iuu-area*vc^2 ! centroidal values
126 Ivvc=Ivv-area*uc^2
127 M=rho*t*area ! mass, kg
128 Juuc=Iuuc*rho*t ! cm MMOI, kg-m^2
129 Jvvc=Ivvc*rho*t ! cm MMOI, kg-m^2
130 Jc=Juuc+Jvvc ! cm polar MMOI
131 CLEAR
132 PRINT
133 PRINT " Program c:\mom \RckrDyn3.Tru"
134 PRINT " "&time$&" on "&date$
135 PRINT
136 PRINT " Inertial Data"
137 PRINT " M = ";M;"kg"
138 PRINT " uc = ";uc;"m"
139 PRINT " vc = ";vc;"m"
140 PRINT " Juuc = ";Juuc;"kg-m^2"
141 PRINT " Jvvc = ";Jvvc;"kg-m^2"
142 PRINT " Jc = ";Jc;"kg-m^2"
143 Kspring=3500 ! spring rate, N/m
144 So=abs(vb-yd) ! free length of spring
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145 Cdamp=100 ! damper rate, N-s/m
146 FFmx=200 ! ampl of force pulse, N
147 tfmx=0.005 ! force pulse duration, s
148 GET KEY xxx
149 ! Initial values ...
150 t=0 ! initial time
151 th=0 ! initial theta
152 dth=0 ! initial velocity
153 h=0.0001 ! time step
154 CLEAR
155 ihmx=1135
156 FOR ih=1 to ihmx
157 ! Inputs are t=rk42t, y=rk42y, dy=rk42dy, h=rkr2h
158 CALL RK42(t,th,dth,h) ! start Runge-Kutta
159 tsav(ih)=t ! save the results
160 thsav(ih)=th
161 dthsav(ih)=dth
162 thmx=max(thmx,th) ! search for max values
163 dthmx=max(dthmx,abs(dth))
164 IF t<=tfmx then FF=FFmx ! force pulse
165 IF t>tfmx then FF=0
166 fsav(ih)=FF
167 NEXT ih
168 CLEAR
169 SET WINDOW -.8*tsav(ihmx),1.9*tsav(ihmx),-1.4,2.1
170 PLOT TEXT, AT 0.6*tsav(ihmx),0.5: "Program RckrDyn3.Tru"
171 PLOT TEXT, AT 0.6*tsav(ihmx),0.4: date$
172 PLOT TEXT, AT 0.6*tsav(ihmx),0.3: time$
173 PLOT 0,0; ! horizontal axis
174 PLOT tsav(ihmx),0
175 PLOT 0,-.3; ! vertical axis
176 PLOT 0,1.1
177 FOR ix=1 to 11 ! horizontal axis ticks
178 PLOT 0.01*ix,0;
179 PLOT 0.01*ix,.04
180 ix$=str$(.01*ix)
181 PLOT TEXT, AT 0.01*ix-.003,-.06: ix$
182 NEXT ix
183 FOR iz=1 to ihmx
184 PLOT tsav(iz),thsav(iz)/thmx; ! normalized plot
185 NEXT iz
186 PLOT
187 PLOT TEXT, AT .4*tsav(ihmx),.90: "Theta max = "&str$(thmx)&" rad"
188 PLOT TEXT, AT .4*tsav(ihmx),.83: " = "&str$(thmx*180/pi)&" deg"
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189 FOR iz=1 to ihmx
190 PLOT tsav(iz),dthsav(iz)/dthmx; ! normalized plot
191 NEXT iz
192 PLOT
193 PLOT TEXT, AT .4*tsav(ihmx),.76: "dth max = "&str$(dthmx)&" rad/s"
194 FOR iz=1 to ihmx
195 PLOT tsav(iz),fsav(iz)/(FFmx); ! normalized plot
196 NEXT iz
197 PLOT
198 PLOT TEXT, AT .4*tsav(ihmx),.69: "F max = "&str$(FFmx)&" N"
199 GET KEY xxx
200 PRINT " Do you want a listed output?"
201 PRINT " y/n"
202 INPUT lo$
203 IF lo$="y" then
204 lc=0
205 CLEAR
206 blk$=" "
207 uug$=" t=#.##### theta=#.##### thdot=###.##### F=###.##"
208 FOR iz=10 to ihmx step 10
209 PRINT using uug$: tsav(iz),thsav(iz),dthsav(iz),Fsav(iz)
210 IF thsav(iz)<=0 and dthsav(iz)<0 then EXIT FOR
211 NEXT iz
212 iz2=iz ! search for more precise impact event values
213 iz1=iz-9
214 FOR iz=iz1 to iz2
215 IF thsav(iz)>0 and thsav(iz+1)<0 then
216 izz=iz
217 PRINT blk$&"Best estimate for impact event"
218 PRINT blk$&"t = ";tsav(izz);"th = ";thsav(izz);"dth =";dthsav(izz)
219 EXIT FOR
220 END IF
221 NEXT iz
222 PRINT blk$&"step size, h = ";h;" sec"
223 PRINT blk$&"Program RckrDyn3.Tru at "&time$&" on "&date$
224 END IF
225 SUB Deriv(tt,tth,dtth,ddtth)
226 theta=tth
227 CALL Kinem ! get current kinematic solutions
228 II=M*(Kcx^2+Kcy^2)+Jc*Kbeta^2 ! gen�l inertia
229 CC=M*(Kcx*Lcx+Kcy*Lcy) ! centripetal coeff
230 dVdth=Kspring*(S-So)*Ks ! dV/dth
231 FF=0 ! force pulse
232 IF tt<=tfmx then FF=FFmx ! force pulse
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233 Qnc=-(FF*Kax+dtth*Cdamp*Ks^2) ! gen�l nonconservative force
234 ddtth=(Qnc-CC*dtth^2-dVdth)/II ! acceleration
235 END SUB
236 SUB Kinem
237 ! input is theta
238 beta=theta*(1-rr/capR)
239 Kbeta=1-rr/capR
240 Lbeta=0
241 ! Point A kinematic functions
242 up=ua
243 vp=va
244 CALL PointP
245 xa=xp ! save point A results
246 ya=yp
247 Kax=Kpx
248 Kay=Kpy
249 Lax=Lpx
250 Lay=Lpy
251 ! Point B kinematic functions
252 up=ub
253 vp=vb
254 CALL PointP
255 xb=xp ! save point B results
256 yb=yp
257 Kbx=Kpx
258 Kby=Kpy
259 Lbx=Lpy
260 Lby=Lpy
261 ! Center of mass kinematic functions
262 up=uc
263 vp=vc
264 CALL PointP
265 xc=xp ! save CM results
266 yc=yp
267 Kcx=Kpx
268 Kcy=Kpy
269 Lcx=Lpx
270 Lcy=Lpy
271 ! Spring/damper length
272 S=sqr((xb-xd)^2+(yb-yd)^2) ! spring/damper length
273 Ks=((xb-xd)*Kbx+(yb-yd)*Kby)/S
274 END SUB
275 SUB PointP
276 ! inputs are theta,up,vp, outputs are xp,yp,kpx,kpy,Lpx,Lpy
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277 fctr=(1-rr/capR)
278 arg=fctr*theta
279 xp=up*cos(arg)-vp*sin(arg)-(capR-rr)*cos(theta)
280 yp=up*sin(arg)+vp*cos(arg)-(capR-rr)*sin(theta)
281 Kpx=-up*fctr*sin(arg)-vp*fctr*cos(arg)+(capR-rr)*sin(theta)
282 Kpy=up*fctr*cos(arg)-vp*fctr*sin(arg)-(capR-rr)*cos(theta)
283 Lpx=-up*fctr^2*cos(arg)+vp*fctr^2*sin(arg)+(capR-rr)*cos(theta)
284 Lpy=-up*fctr^2*sin(arg)-vp*fctr^2*cos(arg)+(capR-rr)*sin(theta)
285 END SUB
286 SUB RK42(rk42t,rk42y,rk42dy,rk42h)

(This part is Subroutine RK42, exactly as listed in App. 3)
322 END

The plotted results from the program are shown in Figure 7.6. The plot shows, in
normalized form, curves for � (t) ; _� (t) ; and F (t). (Note that F (t) is just the short,
rectangular pulse at the beginning.) It is immediately evident that the whole event is
completed in slightly more than 0:1 seconds.

Figure 7.6: Normalized Rocker Response Curves for F (t) ; � (t), and _� (t) versus time t

The last few lines of the tabulated results from the code above are as follows:

t= .11100 theta= .00044 thdot=- .33079 F= .00
t= .11200 theta= .00013 thdot=- .30353 F= .00
t= .11300 theta=-.00016 thdot=- .27771 F= .00

Best estimate for impact event
t = .1124 th = 6.9892723e-6 dth =-.29303114
step size, h = .0001 sec
Program RckrDyn3.Tru at 15:54:06 on 20170831

Most of the results from the previous analysis can be found in subroutine Deriv that
begins at line 225, subroutine Kinem beginning at line 236, and subroutine PointP be-
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ginning at line 275. Note that in the subroutines, the values of time and � are denoted
by tt and theta; in the main program, these same variables are denoted by t, and th.

The answers to the two principal questions are read directly from the output. From the
graph, the maximum excursion is �Max = 0:4927 rad = 28:232 degrees. The output list
operation includes the results of a search for the impact event (the computed solution
closest to the impact), with the result that (approximately) timpact = 0:1124 sec, _�impact =
�0:29303 rad/s. At this time, the position is still very slightly positive, �impact = 6:989 �
10�6 rad, which for most purposes can be taken to be zero.

The simulation is ultimately terminated by simply running out the FOR-NEXT loop
(lines 156-167) in steps of h = 0:0001 seconds. While this is rather crude, it is simple and
e¤ective; the number of steps to allow is determined by experimentation. The printed
output is listed in steps of 10h as long as � > 0, stopping after the �rst negative value
(lines 200-223). This initiates a search through the previously computed solution to
locate a better estimate for the impact event (lines 212-221).

The program follows the basic �ow chart given in Figure 7.3, particularly in that all of
the results are generated before there is any output at all. Only after the simulation has
ended (line 167) does the output begin, �rst with a plot of the results and later with the
option for a list of values. The major parts of the program are these:

1. Program Preliminariess (lines 101-108) �This is just the usual headers, option
statements, dimension statements, etc. found in most True BASIC programs.

2. Data Input (lines 109-148) �This is the problem data, the given information
and that developed in Appendix 4. Note that the original planar area data, lines
120-126, is used to express the mass and moment of inertia, lines 127-130.

3. Initialization (lines 149-155) �This is the establishment of the initial values and
the step size. The step size is developed by trial and error until a satisfactory value
is determined.

4. Runge-Kutta Step (RK42, lines 286-321) �This is exactly as it is presented in
Appendix 3.

5. Subroutine Deriv (lines 225-235) �This routine assembles the equation of motion,
solved for ��, based on values computed in other routines.

6. Subroutine Kinem (lines 236-274) - This begins with the rolling constraint re-
lation, and then repeatedly calls PointP to make position, velocity coe¢ cient, and
velocity coe¢ cient derivative calculations for the force application point (A), the
spring-damper attachment point (B), and the center of mass (C). It also calculates
the length and velocity coe¢ cient for the spring-damper length, S.
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7. Subroutine PointP (lines 275-285) �This routine implements the position, veloc-
ity coe¢ cient, and velocity coe¢ cient derivative calculations for any point (up; vp).
The use of a separate subroutine for this purpose is to avoid the rather tedious
repeated programming of these equations.

8. Graphical Output (lines 168-199) �These are simply the commands to draw the
axes for plotting, and then plot the several curves. Several lines of text are also
added to the graph to provide maximum values.

9. Tabular Output (lines 200-224) �There is the option to list the results in steps
of 10h (simply to avoid an overly long table). This tabulation continues as long
as � > 0; and stopping after the �rst negative angle. When this occurs, a search
through the previously generated results is undertaken to establish a more precise
estimate of the time of impact and the approach velocity just before impact.

7.7.2 Trammel with Pulse Loading

Consider again the trammel system previously considered in Chapters 2 and 6, now
dynamically displaced from the rest equilibrium position by the application of blow (a
brief force pulse) applied to the vertical slider as shown in Figure 7.7. The problem at
hand is to �nd the motion resulting from the vertical blow.

Figure 7.7: Trammel Dynamic System
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The external vertical force Fy (t) is only brie�y nonzero, and is assumed to take the form

Fy (t) = Fo sin

�
�t

�

�
0 � t � � = 0:45

= 0 t > � (7.56)

This functional form, known as a half-sine pulse, is a plausible approximation to the form
for a force due to an impact from a hammer or similar object.

7.7.2.1 System Equation of Motion

For computing the dynamic response, it is necessary to formulate the equation of motion
employing Eksergian�s equation of motion. Begin by writing the system kinetic energy,
making use of the kinematic results from Chapter 2:

T =
1

2
m1

�
_x2c + _y2c

�
+
1

2
I1c _�

2
+
1

2
m2 _x

2 +
1

2
m3 _y

2

=
1

2
_�
2
�
m1

L2

4

�
cos2 � + sin2 �

�
+ I1c +m2 (�L sin �)2 +m3 (�L cos �)2

�
=
1

2
_�
2
�
1

4
m1L

2 + I1c +m2L
2 sin2 � +m3L

2 cos2 �

�
(7.57)

From this the generalized inertia and centripetal coe¢ cient are extracted

I =
1

4
m1L

2 + I1c +m2L
2 sin2 � +m3L

2 cos2 � (7.58)

C =
1

2

dI
d�
= (m2 �m3)L

2 sin � cos � (7.59)

The external forces, other than the blow to the top, are all conservative, and are most
easily included by use of a potential energy function, V (�), as was done in Chapter 6:

V (�) =
�w1
2
+ w3

�
L sin � +

1

2
KS (L cos � � xo)

2 (7.60)

dV

d�
=
�w1
2
+ w3

�
L cos � �KS (L cos � � xo)L sin � (7.61)

In order to include the external blow on the vertical slider, a nonconservative virtual
work expression is used to determine the nonconservative generalized force, Qnc:

�W nc = �Fy (t) �y = �FyKy �� (7.62)

Qnc = �Fy (t)Ky = �Fy (t)L cos � (7.63)
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Then the equation of motion is

Qnc = ��I+ _�2C+
dV

d�

�� =

[�Fy (t)L cos � � _�
2
(m2 �m3)L

2 sin � cos �

�
�
1
2
m1 +m3

�
gL cos � +KSL sin � (L cos � � xo)]

1
4
L2m1 + I1c +m2L2 sin

2 � +m3L2 cos2 �
(7.64)

The form of this equation of motion is such as to indicate that a closed form solution
is not to be found, and therefore a numerical solution is required. At this point, it is
necessary to appeal to the Runge-Kutta process described in Appendix 3.

7.7.2.2 Numerical Example

The physical data for the system remains as previously: L = 30 in., w1 = 48:287 lb,
I1c = 9:3800 lb�s2�in. For the x�axis slider, w2 = 17 lb, and for the y�axis slider,
w3 = 25 lb, the spring sti¤ness is KS = 60 lb/in, and the free length of the spring is
xo = 12 inches. The vertical blow applied to the top slider is described by

Fy (t) = 450 sin

�
�t

�

�
0 � t � � = 0:45 sec

= 0 � < t

Figure 7.8: Trammel Dynamic Response, � (t)

There is no known closed form solution for the equation of motion, equation (7.64), but it
is not di¢ cult to solve using the Runge-Kutta numerical method described in Appendix
3. The result is plotted in Figure 7.8, along with a horizontal line at the level of the
equilibrium value for the angle �. The horizontal line at the equilibrium level is marked
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o¤ in multiples of � , the duration of the blow that initiates the motion. The vertical axis
scale shows the value of � (t) in radians. There are several things to observe about the
numerical solution:

1. The solution starts with � (0) = �eq, the equilibrium value determined in Chapter
6.

2. The initial motion shows � diminishing from the blow Fy (t) to a minimum value.

3. The angle is actually above the equilibrium value before the end of the blow.

4. After Fy (t) goes to zero, the system simply oscillates in free vibration.

5. The free vibration phase shows constant amplitude, indicating that there is no
energy loss. This is consistent with the fact that no damping was included in the
model. In a real system, there would certainly be damping due to the lubricated
joints and other friction sources, and this would cause the free vibratory motion to
gradually decay in amplitude.

6. The period of the steady oscillation following the end of the blow is � � 0:2822 sec,
corresponding to a frequency f = 3:544 Hz. This value is determined by taking
the time di¤erence between passages through the equilibrium position with positive
slope.

7.7.3 Four-Bar Mechanism

The mechanism shown in Figure 7.9 is used in a cardboard box manufac-
turing operation to spread a viscous glue on the cardboard before the boxes
are assembled. This mechanism is a scaled version of the (approximate)
straight-line mechanism previously shown in Figure 2.19. A brush-type ap-
plicator at point G spreads the glue during the straight line portion of the
cycle, and a solenoid on the arm lifts the brush during the return portion of
the cycle. While the brush is applying the glue, there is a viscous drag force
that opposes the motion with viscous coe¢ cient B; there is no drag force
opposing the return motion. The glue application begins at � = �1 and ends
when � = �2 (see table below for values). In addition to the viscous drag
of the glue brush, miscellaneous bearing friction and windage contribute an
e¤ective drag BBearing acting at the input crank.
The entire mechanism is powered by a NEMA Type B induction motor

rated at 750 W at 1440 rpm (see Appendix 5.1.3 for the motor torque-speed
curve). The motor speed is geared down to the crank speed using three stages
of gearing. All of the gears are identical, with Ng = 68 teeth, and all of the
pinions are identical with Np = 19 teeth. The gearing mass moments of
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Figure 7.9: Motor Driven Four Bar Linkage for Glue Application Machine

inertia are Jp for each pinion, and Jg for each gear. Numerical values are
given in Tables 7.1, 7.2, and 7.3.
The questions of primary interest are:

1. How long does it take for this motor to bring the whole mechanism up to steady
speed? This implies that the torque-speed curve for the full speed range is required.

2. What is the cycle time for steady state?

Table 7.1 Dimensional Data

C1 = 0:200 m Input Crank Length

C2 = 0:500 m Coupler Length

C3 = 0:500 m Second Crank Length

C4 = 0:400 m Stationary Link Length

�1 = 84
o Crank Angle Where Glue Application Begins

�2 = 276
o Crank Angle Where Glue Application Ends
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Table 7.2 Inertial Data

J1o = 24:962 kg-m2 Input Crank MMOI wrt Fixed Pivot

JMtr = 4:6803 � 10�7 kg-m2 Motor Rotor MMOI

Jp = 6:3315 � 10�5 kg-m2 Pinion MMOI

Jg = 1:0388 � 10�2 kg-m2 Gear MMOI

J2c = 39:003 kg-m2 Coupler MMOI wrt CM

M2 = 18:721 kg Mass of Extended Coupler Link

J3o = 390:098 kg-m2 Second Crank MMOI wrt Fixed Pivot

Table 7.3 Additional Parameters

u2c = 0:500 m Body Coordinate for Coupler Link CM

v2c = 0:100 m Body Coordinate for Coupler Link CM

uG = 1:000 m Body Coordinate for Glue Brush

vG = 0:000 m Body Coordinate for Glue Brush

BGlue = 200 N-s/m Glue Brush Viscous Drag Coe¢ cient

217 N-s/m Bearing Friction Viscous Coe¢ cient

7.7.3.1 Mathematical Formulation

The input crank angle � is chosen as the generalized coordinate, and the equations of
motion must be determined. As indicated in Figure 7.9, the secondary variables are �
and �, measured in the same manner as the four-bar mechanism considered in Section
2.5. Most of the necessary kinematic analysis was done in Chapter 2, and can simply be
brought forward from there, with the exception of the gear train.

Gear Train From the problem statement, Np = 19 T and Ng = 68 T for each train
element pair. The gear train equations of constraint are

 45 =
Ng6

Np5

� =
Ng

Np

� (7.65)

 23 =
Ng4

Np3

 45 =

�
Ng

Np

�2
� (7.66)

 1 =
Ng2

Np2

 23 =

�
Ng

Np

�3
� (7.67)
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where  1 is the actual motor rotor rotation, _ 1 = !mtr.

Kinetic Energy and Generalized Inertia As a next step, the kinetic energy of
the system is

T =
1

2
[(J1o + Jg) _�

2
+ (Jp + Jg) _ 

2

45 + (Jp + Jg) _ 
2

23 + (Jp + JMtr) _ 
2

1

+J2c _�
2 +M2

�
_x2c2 + _y2c2

�
+ J3o _�

2
]

=
1

2
_�
2
[J1o + Jg + (Jp + Jg)

�
Ng

Np

�2
+ (Jp + Jg)

�
Ng

Np

�4
+(Jp + JMtr)

�
Ng

Np

�6
+ J2cK

2
� +M2

�
K2
2cx +K2

2cy

�
+ J3oK

2
�] (7.68)

From the kinetic energy, the generalized inertia is identi�ed as

I (�) = J1o + Jg + (Jp + Jg)

�
Ng

Np

�2
+ (Jp + Jg)

�
Ng

Np

�4
(7.69)

+(Jp + JMtr)

�
Ng

Np

�6
+ J3oK

2
� + J2cK

2
� +M2

�
K2
2cx +K2

2cy

�
and the centripetal coe¢ cient is

C (�) = J2cK�L� + J3oK�L� +M2 (K2cxL2cx +K2cyL2cy) (7.70)

Notice the role of the tooth number ratio (Ng=Np) in magnifying the inertia of the motor
rotor and gear train components as re�ected at the input crank. Thus, even though the
motor rotor has a relatively small mass moment of inertia about its own axis, at the
input crank of the four bar linkage, it appears like a much larger inertia.

Nonconservative Virtual Work Point G is the point where the glue applicator is
located. It traces an approximately straight line, but it is not exactly so. To have an
exact expression for the work done by the glue brush, consider �rst the velocity of the
brush, referred to global coordinates with the associated unit vectors i and j,

vG = _xGi+ _yGj

= _� (iKGx + jKGy) (7.71)

The virtual displacement of the contact point is �rG

�rG = (iKGx + jKGy) �� (7.72)
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The virtual work done on the linkage by the brush force is then

�WBrush = �BGlue f (�)vG � �rG
= �BGlue

_� f (�)
�
K2
Gx +K2

Gy

�
�� (7.73)

where the lifting of the glue brush (which ends the associated drag force) is described by
f (�) = +1 for �1 < � < �2, and zero otherwise.

The virtual work done on the linkage by the motor torque is

�WMtr = TMtr

�
_ 1

�
� 1

= TMtr (!mtr)

�
Ng

Np

�3
�� (7.74)

so that the net external virtual work done on the linkage is

�W =

"
TMtr (!mtr)

�
Ng

Np

�3
�BBearing

_� �BGlue
_� f (�)

�
K2
Gx +K2

Gy

�#
�� (7.75)

The generalized force is identi�ed from the virtual work expression as

QNC = TMtr (!mtr)

�
Ng

Np

�3
�BBearing

_� �BGlue
_� f (�)

�
K2
Gx +K2

Gy

�
(7.76)

From the terms just described, the equation of motion can be assembled to evaluate the
second derivative, as will be required for the numerical integration. A review of the terms
shows that the required kinematic solutions are �(�), �(�), K� (�), K� (�), L� (�), and
L� (�). All of the other required information, such as the base coordinates and velocity
coe¢ cients for point (G), the velocity coe¢ cients, and velocity coe¢ cient derivatives for
the center of mass, and so on, can be determined directly from these six functions. The
necessary function values can then be determined using the example program in Section
2.3.

Returning to the mainstream of the problem, the equation of motion is given by Ekser-
gian�s form as

I (�) �� + C (�) _�2 = QNC (7.77)

with the initial conditions

� (0) = 0:0 _� (0) = 0:0 (7.78)

Mechanics of Machines c 2019 Samuel Doughty



7.7. MECHANISM SIMULATION EXAMPLES 257

All of the required coe¢ cients are expressed above. Solving this for the second derivative,
as required for the Runge-Kutta solution, gives:

�� =
1

I (�)

h
QNC � C (�) _�2

i
(7.79)

7.7.3.2 Simulation Results

The equation of motion has been solved numerically using the RK42 algorithm presented
in Appendix 3. The results of the simulation, plotted as normalized functions of time, are
shown �rst in Figure 7.10. The maximum crank angle is approximately 5.3 revolutions,
while the maximum crank speed is approximately 3.3 rad/s. The curve that starts at
zero but soon begins to look almost like two straight lines is the input crank angle. Note
that, for about 12 seconds, the motor labors, with the crank speed and correspondingly
the motor speed, remaining very low. After that time, the rate of increase of the angle
becomes much more rapid, again almost appearing as a straight line. The variations in
crank speed are much more evident in the second curve which is a succession of peaks
and valleys.

Figure 7.10: Input Crank Angle (smooth curve) and Crank Speed (jagged curve) Versus
Time

The appearance of the curves in Figure 7.10 for the later time values suggests that a
repeating speed variation is developing, and this is seen much more clearly in Figure
7.11. The two vertical lines are located at �1 and �2, the beginning and end of the glue
application cycle.

In Figure 7.11, the input crank speed is shown as a function of crank angle over each
revolution. The speed starts at zero and initially climbs rapidly until the load due to
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Figure 7.11: Input Crank Speed as a Function of Crank Angle

activation of the glue applicator slows it down. During that �rst revolution, the speed
remains quite low until the glue applicator lifts and the drag is reduced. The end of the
�rst (lowest) curve is continued as the next curve up on the left end. It is evident that,
during the second cycle at just about �2, the system falls into the steady state. The
steady state is described by the top curve which repeats over and over.

The cyclic nature of the speed variation is the de�ning characteristic for steady operation.
It is evident that the crank angle, �, does not repeat but rather increases endlessly. The
crank speed, however, does show a periodic response and this has to be what has to be
meant by steady state. Note that steady state does not mean constant speed; it
only means a cyclic once per revolution variation in the speed.

Figure 7.12: Motor Torque as a Function of Input Crank Angle

With the motor speed varying as shown in the two preceding �gures, it is certainly to
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be expected that the motor torque will likewise vary. Figure 7.12 shows the variation of
motor torque for the �rst, second, and all later revolutions of the input crank. The e¤ect
of the glue applicator in loading the system during start-up is clearly evident in the �at
line across the middle of the �rst cycle (lowest curve). On the second cycle, the motor
torque is fairly constant through the entire revolution, but then when the steady state
develops, it is seen that there is a sharp dip in the motor torque shortly before � = �1.
When this happens, the stored kinetic energy of the mechanism is providing most of the
energy required to drive the system, but this condition lasts only brie�y. The torque
again rises to approximately 12 N-m until the end of the revolution where it drops to
about 8 N-m. This cyclic variation continues inde�nitely, as long as the system remains
unchanged due to wear, loss of power, increased friction, or some other upset.

Returning at last to the two questions raised at the beginning, the results are these:

1. From Figure 7.10, the approximate beginning of steady state operation is about 14
seconds after electrical power is applied to the motor. This is nearing the end of
the second revolution of the input crank.

2. From the plotting program, the times for each revolution can be fairly well estimated
(when the program jumps back to start a new cycle curve). This gives an estimated
cycle time of 2:708 seconds.

7.8 Conclusion

Eksergian�s equation provides a simple, direct way to obtain the equation of motion for
single degree of freedom mechanisms. The alternative approach, based on the application
of Newton�s Second Law to a group of free bodies, is much longer and more prone to
errors for systems of even modest complexity. Furthermore, the alternative approach
produces a large system of equations, from which the force terms must be eliminated to
obtain the equation of motion. With application of Eksergian�s equation, the equation
of motion follows in just a few steps after the system kinetic energy is written.

The generalized inertia shows the role of each mass within the system as it a¤ects the
complete system inertia. The velocity coe¢ cients tie this all together because they relate
the individual component velocities to the generalized velocity. However, perhaps the
most useful aspect of Eksergian�s equation is the manner in which the e¤ect of varying
generalized inertia is taken into account through the centripetal coe¢ cient. The use
of velocity coe¢ cient derivatives to express the centripetal coe¢ cient shows the varying
e¤ect of each individual mass on the system as a whole. The generalized force, previously
introduced in Chapter 6 as a term that must vanish for equilibrium, is here seen to drive
the motion. In some cases, it is useful to split the generalized force into a nonconservative
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term and a conservative term, the latter expressed as the gradient of a potential function.
The velocity coe¢ cients are again useful in expressing these terms.

For systems of any signi�cant degree of complexity, the resulting di¤erential equations
are almost always unsolvable in closed form. They do, however, lend themselves readily
to numerical solution by means of the Runge-Kutta algorithm. Thus there is really no
need to consider the equations of motion as excessively di¢ cult; the means for numerical
solution is readily at hand!
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Problems

For all of the problems in this set, the objective is to formulate the equation of motion
and the appropriate initial conditions. For that purpose, the following �ve parts are
required for each problem:

a. Kinematic analysis as required;

b. Determination of kinetic energy, generalized inertia, and centripetal coe¢ cient;

c. Determination of the complete generalized force, or the nonconservative generalized
force and the appropriate potential function;

d. Determination of the equation of motion;

e. Determination of the appropriate initial conditions.

With regard to item a, in those cases where an analytical position solution appears
practical, the solution should be done. In cases where no analytical position solution is
evident, set up the position equations and note that a numerical solution is required.
Then, develop the velocity coe¢ cients, velocity coe¢ cient derivatives, base coordinates,
and so forth as will be required for the later parts of the problem. For the later parts, do
not substitute the expressions for secondary variables, velocity coe¢ cients, and velocity
coe¢ cient derivatives, but simply refer to them by the standard notations. Be careful
to use consistent subscripting throughout. Many of the data items are indicated on the
�gures, such asM1 or J4c. These are understood to be known values, with the subscripts
identifying the body with which they are associated. A subscript c on a mass moment of
inertia is understood to indicate the center of mass as the reference point for that value.
Similarly, a subscript o indicates that the reference point is a �xed pivot. Do not consider
gravitational e¤ects except when the gravity vector is shown in the �gure. In most cases,
the initial values can be determined in closed form, but there may be some cases where
a numerical process is required. If so, set up the equations to be solved and identify the
numerical procedure to be used, but do not attempt to complete the solution. In those
cases where a generalized coordinate has been denoted by q or �, the equation of motion
should be written in terms of that variable. If no generalized coordinate is indicated,
then a suitable choice must be made.

7-1 The two sliders with massesM1 andM2 are separated by a constant distance L. The
center of mass for the connecting link is located by the body polar coordinates (Rc; Ac).
Forces FX and FY act at the point located by the body polar coordinates (RF ; AF ).
Note the dashpot acting on the vertical slider, developing a force equal to the dashpot
coe¢ cient B multiplied by the velocity of the slider. The slider M1 is initially moving to
the right with speed Vxo and the horizontal slider pivot is at position Xo.
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7-2 The four-bar linkage hangs as a pendulum, swinging in planar motion under the
in�uence of gravity. The link lengths are C1; C2; C3; and C4, and the primary variable is
the angle of the �rst crank, �. For each link, the center of mass is at the center of the
link. Do not make any small angle assumptions.

7-3 The roller rolls without slipping on the horizontal surface, while the lever rotates
and slides along the stationary pin in the slot. Gravity acts vertically downward. The
dimensions C, H;and R are all known. The system is initially at � = 0 with the roller
moving to the right at the speed Vxo.

7-4 A slider of mass MS and centroidal mass moment of inertia JSC moves along the
pendulum shaft under the control of gravity and an inextensible tape. The other end of
the tape is wrapped around a stationary circular drum of radius C. When the pendulum
is vertical, the slider position is R = Ro, a given value. There is also a spring with
sti¤ness K acting between the pendulum and a �xed point to the left. The pendulum
center of mass is at radius A and the pendulum has massMP and mass moment of inertia
JPC . The system is released from rest with � = 35o , and at that position, the spring is
relaxed.

7-5 The mass M3 (with mass moment of inertia J3c) slides without friction on both the
ramp and the pendulum shaft. When the pendulum shaft is vertical, the slider center
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of mass is a distance B directly below the pivot. The pendulum shaft is of length L
and mass M1, while the bob is a thin, uniform disk of mass M2 and diameter D. The
associated mass moments of inertia for the bob should be determined. The system is
released with � = 0, and the slider is moving with speed V3o down the ramp, measured
parallel to the ramp.

7-6 The trammel crank drive involves a drive disk with mass moment of inertia Jc,
two slider, each with mass Ms and centroidal mass moment of inertia Jsc, a third slider
with mass Mx, and a uniform connecting rod with mass distribution m = mass/length.
Viscous friction, described by the coe¢ cient B, acts at three places as indicated. The
system is driven by the couple To as indicated. Initially, the slider Mx is at the midpoint
of its stroke and its speed is Vxo to the right.

7-7 The �gure shows one crank throw of an integral engine-compressor, a type of machine
commonly used in the gas pipeline industry. The double-acting compressor cylinder is
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horizontal, while the power cylinder is inclined to the horizontal by the angle �. An
articulated connecting rod mechanism is used, with the master rod attached to the com-
pressor crosshead. The slave rod goes to the power piston from the master rod. Consider
the cylinder pressures to be the following known functions:

Ph = Ph

�
X1; _X1

�
compressor head-end pressure, acting on area Ah

Pc = Pc

�
_X; _X1

�
compressor crank-side pressure, acting on area Ac

Pp = Pp

�
X2; _X2

�
power cylinder pressure, acting on area Ap

The crank, with radius R, has mass moment of inertia Jo with respect to the �xed pivot.
The master rod has length L1, mass M1, and mass moment of inertia J1c; the master
rod center of mass is located by body coordinates (uc; vc). The slave rod attaches to the
master rod at the point (up; vp) and the slave rod has mass M2 and mass moment of
inertia J2c. The crosshead, piston rod, and piston assembly has mass M3. The slave rod
center of mass is a distance u2 upward from the point of connection with the master rod,
and the total length of the slave rod is L2. At t = 0, the power piston is at top dead
center, and the crosshead is moving to the left with speed Vxo.

7-8 Each link has uniform mass distribution, with m =mass/length, and the slider mass
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is Ms. The system is subject to the applied force F and the viscous force on the lower
face of the slider. At t = 0, the system is at rest with the length L2 perpendicular to L3.

7-9 The �gure shows a four-bar linkage with a massive coupler link; the other links are
massless. The center of mass of the coupler link is located at (uc; vc), as indicated. The
system is driven by applied forces Fx and Fy, and subject to a retarding force developed in
the dashpot. The dashpot connection location (uB; vB) and the point of force application,
(uF ; vF ), are all known. When the motion begins, the link C1 is along the Y�axis, and
the coupler center of mass has horizontal velocity Vxo.

7-10 The quick return mechanism consists of two sliders of massM1 andM2, respectively,
and uniform bars for the connecting link and the crank. The mass per unit length for
the connecting link is m. The length of the connecting link is L and the crank radius
is R. The slider where the crank drives the connecting link is considered massless. The
mass moment of inertia of the crank with respect to the �xed pivot is JR. The system
is driven by the moment T acting on the crank and force F on the horizontal slider.
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Viscous friction, described by coe¢ cients B1 and B2, acts on the two sliders. At t = 0,
the crank is perpendicular to the connecting link, and rotating clockwise at 20 rad/sec.

7-11 The �gure shows another variation on the quick return mechanism. The lever has
mass moment of inertia Jo with respect to the �xed point. The system is driven by the
moment T and the force F acting on the horizontal slider. Viscous friction, described by
Bs acts on the slider. Viscous friction, described by Bp, also acts on each pin sliding in
the lever slots. The system is initially at � = 0 with the slider moving to the right with
speed Vxo.

7-12 The mechanism shown is an air-actuated press that is used in a manufacturing
operation; the alert reader will recall this system from problems 6-3 and 6-4. The
geometric data provided in problem 6-4 may be assumed for use here. The air cylinder
is supplied air at gauge pressure Pa acting on an e¤ective piston area Aa. The motion
is resisted by the force F (z). The signi�cant masses in the system are the press ram
and the crank; the other parts may be considered massless. The mass of the ram is MR,
and the crank has mass moment of inertia Jo with respect to the �xed point. The pivot
locations on the crank are de�ned by the three distances S1, S2, and S3. The system is
initially at rest with q = qMin, the minimum length of the air cylinder assembly.
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7-13 The mechanism shown is a double slider-crank device, proposed for use in cutting
polymeric materials. The cutting action is the force F at a tool mounted on the slider at
the upper right corner of the �gure. Primary interest is in the steady state operation of
the machine, The input crank at the origin of coordinates is driven by a torque, Tm, from
an induction motor (see Appendix 5.1.4.1 for the linear model applicable near steady
state). The actual cutting force is assumed to be a brief rectangular pulse lasting only
through a short portion of the cycle. There is also a viscous damping action throughout
the entire cycle that is proportional to the velocity of the cutting tool. The masses for
each link, each slider, and the motor mass moment of inertia are all known. It is assumed
that the center of mass for each link is at the center of mass for the link. Associate the
single degree of freedom with the motor rotation angle, �. The mechanism arises in a
research paper published a few years ago from Serbia2.

2Cveticanin, L, Maretic, R. and Zukovic,M, "Dynamics of Polymer Sheets Cutting Mechanism,"
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Strojniski Vestnik - Journal of Mechanical Engineering, Vol. 58, No. 5, 2012, pp. 354-361.
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Chapter 8

MDOF Machine Dynamics

8.1 Introduction

In the previous Chapter 7, the dynamics of single degree of freedom systems were de-
scribed by means of Eksergian�s equation, an energy based approach to obtaining the
system equations of motion for single degree of freedom systems. As demonstrated there,
the energy approach is a very powerful way to deal with complicated systems involving
machine components that are both rotating and translating. This chapter complements
the previous chapter by introducing the Lagrange form for the equations of motion, an
energy based approach to the equations of motion applicable to multidegree of freedom
systems. As in the previous case, the kinetic energy plays a central role, and the use
of potential energy is again optional. The Lagrange form can also be applied to single
degree of freedom systems, but it is slightly less convenient than Eksergian�s form. Where
both are applicable, the �nal equation of motion is identical in both cases.

In Chapter 3, where the kinematics of multidegree of freedom mechanisms are considered,
it was observed that (a) the process for position analysis is virtually identical to that for
single degree of freedommechanisms, but (b) the analysis of velocities and accelerations is
considerably more complex. As indicated there, systems with multiple degrees of freedom
are often best considered on a case-by-case basis, making use of the advantageous features
of each speci�c problem, coupled with the insight of the analyst. To a large extent, these
same comment applies to the dynamics of such systems as well as the kinematics, and
this is the approach used through most of this chapter.

Even so, the lack of an entirely general approach has long posed a challenge for those who
seek a single method for dealing with all problems. At the end of the current chapter,
such a general approach is sketched as a starting point for those who wish to pursue the
topic further.
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8.2 Notation

In formulating theory for multidegree of freedom systems, it is convenient to utilize the
classical notation for generalized coordinates, that is, fqg = col (q1; q2; q3; : : : ; qn) for
a system involving n generalized coordinates. Any particular generalized coordinate is
then designated as qj. In dealing with a particular mechanical system, for which the
speci�c generalized coordinates might happen to be fqg = col (�; x; z; �), it is often
more convenient to use the symbols speci�c to that problem. The reader should have no
di¢ culty distinguishing the intent of the notation from the context.

8.3 Kinetic Energy for MDOF Machine

In Appendix 6 it is shown that, for any single rigid body, the kinetic energy may be
written in the form

T =
1

2
M fVcgT fVcg+

1

2
f!gT [Ic] f!g (8.1)

where

M = mass of the body

[Ic] = mass moment of inertia matrix for the body with respect to the center of mass

fVcg = velocity vector for the center of mass

f!g = angular velocity vector for the body

This result is of fundamental importance in the application energy methods as already
demonstrated in Chapter 7 and to be further demonstrated in the present chapter. It ap-
plies for motion in both two dimensions and three dimensions. If the body is constrained
to move in two dimensions only, the expression can be somewhat simpli�ed to

T =
1

2
M
�
_x2c + _y2c

�
+
1

2
Ic!

2 (8.2)

where _xc and _yc are the in-plane center of mass velocity components, and ! is the (scalar)
angular velocity.

Kinetic energy quantities are simple scalars and therefore directly additive. For a multi-
body system, the total system kinetic energy is simply the sum of the kinetic energies of
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the several components, so that

T =
1

2
M1 fV1cgT fV1cg+

1

2
f!1gT [I1c] f!1g

+
1

2
M2 fV2cgT fV2cg+

1

2
f!2gT [I2c] f!2g

+ � � � (8.3)

The work that follows demonstrates that the kinetic energy expression contains within
it all of the system information regarding inertia and acceleration terms. It is absolutely
central to the analysis of multidegree of freedom systems.

8.4 Lagrange Equation First Form

The �rst general form for the Lagrange equation of motion is developed in Appendix 7
where it is written as

d

dt

@T

@ _qj
� @T

@qj
= Qj (8.4)

where

qj is any of the generalized coordinates of the system;

T is the system kinetic energy;

Qj is the generalized force associated with the coordinate qj.

(It may be useful to review Chapter 6 where the concept of the generalized force is
discussed in more detail.) This is a parallel to Eksergian�s equation (7.21), but this
expression applies for any number of degrees of freedom where Eksergian�s form only
applies to a single degree of freedom system. It also applies to those base excited single
degree of freedom systems for which Eksergian�s equation did not apply.

8.5 Lagrange Equation Second Form

Just as was true for single degree of freedom systems, there are many multidegree of
freedom systems in which some of the forces are derivable from a potential energy func-
tion. This is particularly true for systems involving gravitational or spring forces. In
that case, the complete generalized force can be separated into two parts, one due to the
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potential function and the second due to nonconservative forces. With this separation,
the complete generalized force is

Qj = �
@V (fqg)
@qj

+Qnc
j (8.5)

where

V (fqg) is the potential function that depends upon some or all of the generalized coor-
dinates;

Qnc
j is the remaining, nonconservative portion of the generalized force that is not repre-

sentable by the potential function. Note the superscript nc to indicate nonconservative.

When this form is substituted into the �rst general form of the Lagrange equation, after
some re-arrangement, the result is either of these:

d

dt

@T

@ _qj
� @T

@qj
+
@V

@qj
= Qnc

j (8.6)

d

dt

@L
@ _qj

� @L
@qj

= Qnc
j (8.7)

where L is called the Lagrangian function, L = T � V . These expressions are equivalent
because @L=@ _qj = @T=@ _qj �@V=@ _qj where the last term is always zero because velocities
can not appear in the potential function.

Many people prefer the last, more compact form for the Lagrange equation of motion.
This is particularly true among physicists and those concerned with the development of
theory; it is less true among engineers whose principal concern is solving speci�c problems.
The �rst form of the Lagrange equation, or either variation of the second form may be
applied to any holonomic system problem. When done correctly, they always produce
exactly the same resulting equations of motion.

8.6 Applications of the Lagrange Equation

The real power of the Lagrange formulation is not evident until it is used to work prob-
lems. In application, it is clearly more direct and less prone to error than the vector
methods of Newton. Several examples follow.
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8.6.1 Three Blocks on a Ramp

Consider the motion of three blocks on a ramp, connected by spring and
damper assemblies as shown in Figure 8.1. The position reference lines are at
(unknown) �xed distances, c1 and c2. The two springs are strain free when
x1 = x2 = x3 = 0.

Figure 8.1: Three Blocks on a Ramp

The system has three degrees of freedom, easily associated with the three coordinates x1;
x2; and x3. The �rst step is to deal with the kinematics, speci�cally the change in length
of the two springs. The unstretched lengths of the springs are

s1o = c1 � d12 (8.8)

s2o = c2 � d23 (8.9)

where d12 and d23 are the rigid body portions of the distances c1 and c2. With displace-
ment of the bodies, the spring lengths are

s1 = c1 � d12 + x2 � x1 (8.10)

s2 = c2 � d23 + x3 � x2 (8.11)

The strain energy of the springs is then

Vs =
1

2
K1 (s1 � s1o)

2 +
1

2
K2 (s2 � s2o)

2

=
1

2
K (x2 � x1)

2 +
1

2
K2 (x3 � x2)

2 (8.12)
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The complete potential energy expression, including both spring strain energy and grav-
itational potential terms, is then

V =
1

2
K (x2 � x1)

2 +
1

2
K2 (x3 � x2)

2

+g sin� [M1x1 +M2 (c1 + x2) +M3 (c1 + c2 + x3)] (8.13)

The system kinetic energy is T

T =
1

2

�
M1 _x

2
1 +M2 _x

2
2 +M3 _x

2
3

�
(8.14)

There are working forces not taken into account by the potential energy, speci�cally the
dashpot forces, so it is necessary to develop the nonconservative virtual work,

�W nc = �B1 ( _x2 � _x1) � (x2 � x1)�B2 ( _x3 � _x2) � (x3 � x2)

= �B1 ( _x2 � _x1) �x2 +B1 ( _x2 � _x1) �x1

�B2 ( _x3 � _x2) �x3 +B2 ( _x3 � _x2) �x2

= �x1 [B1 ( _x2 � _x1)]

+�x2 [�B1 ( _x2 � _x1) +B2 ( _x3 � _x2)]

+�x3 [�B2 ( _x3 � _x2)] (8.15)

from which the generalized nonconservative forces are

Qnc
1 = B1 ( _x2 � _x1) (8.16)

Qnc
2 = �B1 ( _x2 � _x1) +B2 ( _x3 � _x2) (8.17)

Qnc
3 = �B2 ( _x3 � _x2) (8.18)

For the application of the Lagrange formulation, the necessary derivatives of T and V
are

@T

@x1
= 0 (8.19)

@T

@ _x1
= M1 _x1 (8.20)

d

dt

@T

@ _x1
= M1�x1 (8.21)

@V

@x1
= �K1 (x2 � x1) +M1g sin� (8.22)
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@T

@x2
= 0 (8.23)

@T

@ _x2
= M2 _x2 (8.24)

d

dt

@T

@ _x2
= M2�x2 (8.25)

@V

@x2
= K1 (x2 � x1)�K2 (x3 � x2) +M2g sin� (8.26)

@T

@x3
= 0 (8.27)

@T

@ _x3
= M3 _x3 (8.28)

d

dt

@T

@ _x3
= M3�x3 (8.29)

@V

@x3
= K2 (x3 � x2) +M3g sin� (8.30)

When the equations of motion are assembled according to the Lagrange formulation, the
results are

�M1g sin� = M1�x1 +B1 ( _x1 � _x2) +K1 (x1 � x2) (8.31)

�M2g sin� = M2�x2 �B1 _x1 + (B1 +B2) _x2 �B2 _x3

�K1x1 + (K1 +K2)x2 �K2x3 (8.32)

�M3g sin� = M3�x3 �B2 _x2 +B2 _x3 �K2x2 +K2x3 (8.33)

When these results are recast in matrix form, the result is26664
M1 0 0

0 M2 0

0 0 M3

37775
8>>><>>>:
�x1

�x2

�x3

9>>>=>>>;+
26664

B1 �B1 0

�B1 B1 +B2 �B2
0 �B2 B2

37775
8>>><>>>:
_x1

_x2

_x3

9>>>=>>>;
+

26664
K1 �K1 0

�K1 K1 +K2 �K2

0 �K2 K2

37775
8>>><>>>:
x1

x2

x3

9>>>=>>>; = �g sin�

8>>><>>>:
M1

M2

M3

9>>>=>>>; (8.34)

Note that the distances c1, c2; d12; and d23 do not appear in the equations of motion,
and thus are not required for their formulation. Note also that the extension to a similar
system with more blocks is entirely evident from the form shown here.
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This example problem involves a chain-like system, one in which the motion of each
mass is only in�uenced by that of its two nearest neighbors. Such a system is said to be
close-coupled. The form of the sti¤ness matrix in equation (8.34) is said to be of triple
band diagonal form, referring to the fact that the only nonzero elements are on the main
diagonal, the �rst super diagonal, and the �rst subdiagonal. The triple band diagonal
form is a direct consequence of the close-coupled nature of the system. In contrast, beam
bending vibrations are not close-coupled.

8.6.2 Pendulum Vibration Absorber

The pendulum vibration absorber is a device often used in reciprocat-
ing machines (internal combustion engines and reciprocating compressors) to
control torsional vibration, the primary topic of Chapter 12. Figure 8.2 shows
such an absorber in a simpli�ed form. The primary mass (representing the
crank and connected mechanism) turns about a �xed center and has mass
moment of inertia Io. The pendulum is idealized as a point mass (m) on a
massless link of length L attached to the primary mass at a radius R. The
motion of the primary mass is described by the angle 
t+ � (t), where 
 is a
relatively large, steady value representing the average speed of the crank. An
external torque, T (t), acts on the primary mass causing the motion irregu-
larity, � (t), that is to eliminated.

Figure 8.2: Pendulum Absorber on Engine Crank

The position of the point mass pendulum relative to stationary coordinates is given by

xp = R cos (
t+ �) + L cos (
t+ � + �) (8.35)

yp = R sin (
t+ �) + L sin (
t+ � + �) (8.36)
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The velocity components are

_xp = �R
�

 + _�

�
sin (
t+ �)� L

�

 + _� + _�

�
sin (
t+ � + �) (8.37)

yp = R
�

 + _�

�
cos (
t+ �) + L

�

 + _� + _�

�
cos (
t+ � + �) (8.38)

The system kinetic energy is T

T =
1

2
Io

�

 + _�

�2
+
1

2
m
�
_x2p + _y2p

�
(8.39)

There is no potential energy involved in this problem because gravity is completely ne-
glected; the motion may be in any plane, but the rotational e¤ects are dominant over
the gravitational e¤ects. The virtual work of the external torque is

�W nc = T (t) �� (8.40)

from which the generalized forces are

Q� = T (t) (8.41)

Q� = 0 (8.42)

The application of the Lagrange formulation requires the determination of several deriv-
atives. When all the di¤erentiations are completed, and the results simpli�ed, these give
one side of each of the two equations of motion which are then set equal to the two
generalized forces. The results are these:

T (t) = ��
�
Io + 2mRL cos�+m

�
R2 + L2

��
+ ��m

�
L2 +RL cos�

�
�m

h
2
�

 + _�

�
_�+ _�

2
i
RL sin� (8.43)

0 = ��
�
L2 +RL cos�

�
+ ��L2 + L sin�

�
R
2 +R _�

2
+ 2R
_�

�
(8.44)

where the common factor m is divided out of the second equation of motion.

As mentioned previously, the primary reason this system is of interest is its application
as a vibration absorber. The next step is to show how the pendulum system can be made
to function in that role.

If the rotational vibration of the crank is eliminated, � = 0, and the crank angular dis-
placement is simply 
t; this is the intended result. To achieve that end, it is important
that the pendulum acts as a linear device which implies small oscillations only [1]. As-
suming all of this to be true, there are three conditions to be imposed at this point:
� = 0; cos� � 1: sin� � �.
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Consider �rst the impact of these conditions on the second equation of motion.

��+ (R=L) 
2� = 0 (8.45)

It is evident that, in linear form, the pendulum has the natural frequency !n

!n = 

p
R=L (8.46)

Suppose that the disturbing torque is of the form T (t) = To sin (n
t) where n =
1; 2; 3; : : :. To achieve the intended purpose, it is necessary to tune the pendulum such
that the natural frequency of the pendulum coincides with the oscillatory order to be
removed. Thus choose R=L such that

n
 = 

p
R=L

R=L = n2 (8.47)

This means that the natural frequency of the pendulum is not constant, but in fact varies
directly in proportion to the gross rotational speed of the system. The pendulum motion
is then sinusoidal,

� (t) = � sin (n
t) (8.48)

Turn next to the �rst of the equations of motion, and again impose the linearization
conditions there. The result is an expression for the torque required to cancel the external
disturbing torque:

T (t) = To sin (n
t)

= m
h
��
�
L2 +RL

�i
= mL2

�
1 + n2

�
n2
2� sin (n
t)

= mR2
�
1 + n2

�

2� sin (n
t) (8.49)

or
To = mR2

�
1 + n2

�

2� (8.50)

Reference [1] makes two important points in regard to this device:

1. The mass of the pendulum has no e¤ect on the tuning;

2. The mass must be correctly sized to e¤ectively remove the intended harmonic.
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The �rst of these points is evident in the expression for !n; the mass m does not appear
there. The second is seen in the equation of motion that produces the torque on the
system. Note that the torque produced by the pendulum is proportional to the product
m � �, so that a smaller mass results in a larger pendulum amplitude in order to cancel
a speci�ed torque harmonic. Reference [1] cautions that the pendulum amplitude must
be limited to a maximum value of � � 0:2 radians for satisfactory results.

8.6.3 Induction Motor Starting a Blower

Consider a system consisting of an induction motor driving a blower
through a friction clutch and gear train. Such a system is shown in Figure
8.3. Initially, with the clutch disengaged, the motor is started and brought
up to no-load speed. After the motor is up to speed, the clutch begins to en-
gage progressively. As the clutch engages, the motor speed drops due to the
imposed load, while the blower train accelerates. During the initial engage-
ment, the clutch slips until it develops su¢ cient friction to provide the torque
required to both (a) accelerate the train, and (b) drive the aerodynamic load
of the blower. Eventually the relative motion across the clutch ceases, and
the entire machine train rotates together. While the clutch is slipping, the
system has two degrees of freedom; after the clutch is locked, the system is
reduced to a single degree of freedom. The detailed description and modeling
of the system follows below. A computer program is required to solve the
equations of motion with a view to answering these questions:

(1) How long does it take for the blower to reach �nal operating speed?

(2) What is the �nal operating speed of the motor under load?

(3) What is the minimum motor speed?

(4) What is the maximum torque transmitted by the clutch?

(5) How much energy is dissipated as heat in the clutch?

Motor The electric motor for this system has the following characteristics:

3 Phase Induction Motor

Rated Voltage 460 v Synch Speed !s = 1800 rpm

Rated Current 59:5 amp No-load Speed !nl = 1790 rpm

Power Factor 0.86 @ 60 Hz Rated Speed !r = 1700 rpm

Power 37 kW Rotor MMOI Jm = 0:1481 kg-m2
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The motor is assumed to follow the linear torque speed relation described in Appendix
5.1.4.1,

Tm (!m) = co + c1!m (8.51)

where the constants are determined to produce the rated and no-load conditions speci�ed
for the motor.

Figure 8.3: Blower Driven Through a Clutch by an Induction Motor

Clutch The clutch for this system is an air-actuated, multiple disk, dry clutch. It
consists of two members, with inertias denoted as Jc1 = 0:0035 kg-m2 on the motor
side and Jc1 = 0:0117 kg-m2 on the output side. To avoid a damaging shock to the
mechanical system when the blower is started, the clutch engages gradually over a time
interval of trise = 0:45 seconds. According the manufacture�s data for this clutch, the
torque transmission capacity of the clutch rises with engagement time according to the
expression

Ttc (t) =

8<:
1
2
Tcr

h
1� cos

�
�t
trise

�i
t � trise

Tcr t > trise
(8.52)

The torque capacity of the clutch is the actual torque transmitted as long as the clutch
is slipping. After slipping ceases, the torque transmitted through the clutch may have
any value not exceeding the rated maximum value, Tcr = 230 N-m.

Gear Set The motor speed is too fast for a large blower, and the necessary speed
reduction is accomplished by a two stage, reverted gear train as shown in Figure 8.3.
Both stages are identical, and each involves a 29 tooth pinion driving a 114 tooth gear.
Thus the gear ratio for each mesh is N = 29=114: The inertias for each pinion and gear
are Jp = 0:0023 kg-m2 and Jg = 0:5531 kg-m2.

Blower The whole purpose of this train is to drive an industrial blower rated at 12
kW when operating at 110 rpm. In the absence of other data about the power required
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at various speeds, the blower is assumed to follow the typical aerodynamic cubic power
law

Pb = cb � !34 (8.53)

where !4 is the impeller speed (rad/s). Based on the given data regarding rated power
and speed for the blower, the constant cb = 185:67288 kW-s3. It follows then that the
torque required to drive the blower at other speeds is expressible as

Tb = cb � !24 (8.54)

The blower is quite large, and has far greater mass moment of inertia than the other
components in the train, Jb = 31:0 kg-m2.

For the present example, losses in the gears and elsewhere are neglected; in professional
practice, these should be included. Similarly, the mass moments of inertia for the various
shafts, couplings, and so forth, are neglected here, but should be included in engineering
practice.

8.6.3.1 System Equations of Motion

Before developing the equations of motion, it is �rst necessary to determine the number
of degrees of freedom and then de�ne appropriate generalized coordinates. Because this is
a rotating machine, the angular positions of the various components are irrelevant; what
are signi�cant are the time derivatives of the angular positions, the angular velocity
values.

At the end of the start-up process, after the clutch is locked up, the system has only
one degree of freedom. In the early part of the start-up, while the clutch is slipping, the
system has two degrees of freedom. Throughout the entire start-up process, the motor
speed is an appropriate generalized coordinate velocity. Indeed, after the clutch is locked
up, it is su¢ cient to describe all of the system velocities. While the clutch is slipping, it is
necessary to have a second generalized coordinate to describe the state of the components
to the right of the clutch. The clutch output shaft velocity is a suitable choice for the
second coordinate velocity, although it is not the only possible choice. For this example,
the generalized coordinate velocities for two degrees of freedom are taken as !1 and !2;
the motor speed and the clutch output shaft speed. When the problem reduces to only a
single degree of freedom, !1; the motor speed, is used as the single generalized coordinate
velocity. The whole matter of the changing number of degrees of freedom is one of the
unusual aspects of this problem.
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The �rst step in preparation for applying the Lagrange equation of motion is to develop
the system kinetic energy. This is written �rst in terms of the angular velocities of the
individual components, and then revised to include the kinematic constraint conditions
that exist:

T =
1

2
(Jm + Jc1)!

2
1 +

1

2
(Jc2 + Jp)!

2
2

+
1

2
(Jg + Jp)!

2
3 +

1

2
(Jg + Jb)!

2
4 (8.55)

where

Jm = motor rotor MMOI

Jc1 = clutch input half MMOI

Jc2 = clutch output half MMOI

Jp = pinion MMOI

Jg = gear MMOI

Jb = blower MMOI

With the kinematic constraints included, the expression for the kinetic energy is

T =
1

2
(Jm + Jc1)!

2
1

+
1

2

�
(Jc2 + Jp) + (Jg + Jp)N

2 + (Jg + Jb)N
4
�
!22 (8.56)

where N = 29=114 is the ratio of a single stage of the gear reduction.

Before assembling the Lagrange equations, it is necessary to develop two derivative rela-
tions:

@T

@!1
= (Jm + Jc1)!1 (8.57)

@T

@!2
=
�
(Jc2 + Jp) + (Jg + Jp)N

2 + (Jg + Jb)N
4
�
!2 (8.58)

The required further time di¤erentiation of these expressions is trivial, and is not written
out here. To avoid the need to write out the mass moment of inertia sums, it is convenient
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to de�ne

J1 = Jm + Jc1 (8.59)

J2 = (Jc2 + Jp) + (Jg + Jp)N
2 + (Jg + Jb)N

4 (8.60)

Note that the partial derivatives with respect to the angles are both zero, because as
mentioned above, for the rotating machine, the angles are irrelevant.

All that remains for the completion of the Lagrange form is the development of the
nonconservative virtual work, leading to the generalized force expressions. The noncon-
servative virtual work is

�W nc = Tm��1 � Tc��1 + Tc��2 � Tb��b

= (Tm � Tc) ��1 +
�
Tc �N2Tb

�
��2

= (Tm � Tc) ��1 +
�
Tc �N6Cb!

2
2

�
��2 (8.61)

where

�1 = motor shaft rotation angle

�2 = clutch output shaft rotation angle

Tm = motor output torque

Tc = torque through the clutch

Tb = blower torque

It is evident that, while there are two degrees of freedom, the nonconservative generalized
forces are

Qnc
1 = Tm � Tc (8.62)

Qnc
2 = Tc �N6Cb!

2
2 (8.63)

When the system reduces to a single degree of freedom, ��2 = ��1, and the single non-
conservative generalized force is

Q = Tm �N6Cb!
2
2 (8.64)

where the clutch torque is no longer doing work on the system. The �nal forms for the
equations of motion are

2 DOF
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J1 _!1 = Tm (!1)� Tc (!1; !2; t) (8.65)

J2 _!2 = Tc (!1; !2; t)�N6Cb!
2
2 (8.66)

1 DOF

(J1 + J2) _!1 = Tm (!1)�N6Cb!
2
1 (8.67)

Note that, in equations (8.65) and (8.66), the clutch torque is indicated explicitly as a
function of the two shaft speeds (as to whether it is slipping or not) and time (as to the
clutch torque capacity as the contact force builds). After the reduction to one degree of
freedom, the clutch torque is no longer in the equation of motion, but it may be calculated
with either of the following expressions:

Tc = Tm � J1 _!1 = J2 _!1 +N6Cb!
2
1 (8.68)

Looking at equations (8.65) and (8.66), it is evident that these equations are not as fully
coupled as one might expect in general. Speci�cally, there is no mathematical coupling
between _!1 and _!2 which would be expected in a more general situation. This makes the
present system particularly simple for numerical solution.

8.6.3.2 System Simulation

In the initial phase, with the clutch slipping, the system has two degrees of freedom,
represented by two, �rst order ordinary di¤erential equations, (8.65) and (8.66). The
numerical solution for these equations is readily accomplished using the Runge-Kutta
algorithms described in Appendix 3. When a numerical simulation of this system is run,
the following results are produced:

Calculated System Parameters
Motor Coefficients
co=36867.774
c1=196.6823
Blower Coefficient
cb=185.67288

Engagement History
dof t omega1 omega2 Tc

sec rad/s rad/s N-m
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2 0.00 187.45 0.00 0
2 0.01 187.44 0.01 0
2 0.02 187.42 0.04 1
2 0.03 187.38 0.14 3
2 0.04 187.30 0.33 4
2 0.05 187.21 0.64 7
2 0.06 187.09 1.10 10
2 0.07 186.92 1.74 13
2 0.08 186.78 2.58 17
2 0.09 186.60 3.66 28
2 0.10 186.39 5.00 27
.
.
.
2 0.21 183.06 40.96 103
2 0.22 182.70 46.24 111
2 0.23 182.34 51.81 119
.
.
.
2 0.43 177.19 167.91 229
2 0.44 177.14 171.51 230
2 0.45 177.11 174.77 230
1 0.46 177.39 177.39 203
1 0.47 178.34 178.34 193
1 0.48 178.80 178.80 187
1 0.49 179.02 179.02 185
1 0.50 179.13 179.13 184
1 0.51 179.18 179.18 183
1 0.52 179.21 179.21 183
1 0.53 179.22 179.22 183
1 0.54 179.22 179.22 183
1 0.55 179.23 179.23 183
1 0.56 179.23 179.23 183
1 0.57 179.23 179.23 183
1 0.58 179.23 179.23 183
1 0.59 179.23 179.23 183
1 0.60 179.23 179.23 183

The plotted results are shown in Figure 8.4. The speed curves utilize the full range of the
vertical axis, but the two torque curves only use the range 0 ! 100 to plot the torques
as percentages of the clutch rated torque. There are several noteworthy points evident
in both the data table and the plotted results.
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Figure 8.4: Induction Motor Starting A Blower Through A Clutch

1. At time t = 0; the motor is at the no-load speed, but as the clutch gradually engages,
the motor speed drops to point (A) due to the increased torque load imposed on
the motor.

2. At time t = 0, the clutch output speed starts at zero and gradually increases as the
clutch engages.

3. Time tA � 0:445 seconds is where the clutch output speed is �nally up to that of
the motor shaft and the clutch stops slipping. After the clutch locks up, notice that
the curve shows that the system accelerates slightly as a single degree of freedom.
This is evident in the numerical data table as well.

4. The blower torque curve, expressed as a percent of the clutch rated torque, is the
lowest curve plotted. It rises continuously as the blower speed increases.

5. The clutch torque rises continuously with increasing time up to point (B) where
it brie�y attains the clutch rated torque level. After point (B) , the clutch torque
drops suddenly when the clutch stops slipping. But notice that it does not imme-
diately fall all the way to the level of the blower torque. It is this continuation of
motor torque in excess of that required to drive the blower that causes the system
to accelerate as a single degree of freedom system.

Returning now to the original list of questions that were to be addressed, the answers
are evident in the observations above.
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1. How long does it take to reach �nal operating speed? �From the tabulated data, it
is evident that the �nal motor operating speed is !1 = 179:23 rad/s �rst achieved
at t = 0:55 seconds.

2. What is the �nal operating speed of the motor under load? �As just mentioned in
the previous answer, !1 = 179:23 rad/s is the �nal motor speed.

3. What is the minimum motor speed? �The plotted results show that the minimum
motor speed occurs at the point where the clutch locks up, tA � 0:445 sec where
the motor speed is between 177:11 and 177:14 rad/s.

4. What is the maximum torque transmitted by the clutch? �The tabulated data
shows the maximum value is 230 N-m, the clutch rated torque, at the point of
lock-up.

5. How much energy is dissipated as heat in the clutch? �This last question requires
a little bit more work, as shown below.

The energy lost in the clutch is the work done by the friction torque in the clutch.
Consider separately the energy input to the clutch and then the energy out of the clutch,
expressed as integrals of the related power expressions:

Win =

Z
Tc d�1 =

Z
Tc � !1 dt (8.69)

Wout =

Z
Tc d�2 =

Z
Tc � !2 dt (8.70)

The energy lost is the di¤erence of these two work values,

Wlost = Win �Wout

=

Z
Tc (!1 � !2 ) dt (8.71)

where the integration extends over the duration of the clutch slip. In the computer code,
after the simulation is completed, it is a simple matter to use the trapezoidal rule to
compute the lost energy integral, with the result Wlost = 3807:55 Joules. This completes
the answers to all of the original questions.

There are other questions that could be addressed with the same primary computer
program, such as

� What is the e¤ect of increasing the clutch rated capacity?

� What is the e¤ect of a shorter clutch capacity rise time?
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� What would be the e¤ect of replacing the gear train with a two-stage belt drive?

� What are the maximum gear tooth forces found in the present system?

� If losses in the gear set are included, how does this change the results?

The reader may wish to consider how the computer program would need to be modi�ed
to answer each of these additional questions.

8.7 A More General Approach

The Lagrange form for the equations of motion o¤ers an approach to dealing with all
holonomic systems, but the application to speci�c problems often entails a signi�cant
amount of analysis. The desire to circumvent this laborious task has led to the search for
approaches that put the labor on a computer, rather than on a human analyst. There
have been a number of programs developed, including IMP (Integrated Mechanisms
Program, J.J. Uicker), DRAM (Dynamic Response of Articulated Machines, M.A.
Chase), ADAMS (Automatic Dynamic Analysis of Mechanical Systems, N.V. Orlan-
dea), DADS (Dynamic Analysis and Design System, E.J. Haug and R. Wehage) [2] and
perhaps others as well. The essential ideas of the DADS program are detailed in [3]. The
methods of such computer codes are usually relatively unattractive for manual calculation
because they forfeit any advantages o¤ered by the details of a speci�c problem.

As already demonstrated in this chapter, the kinetic energy is the key element in describ-
ing the system dynamics. The potential energy may be a useful tool in some cases, but
it is never required. This observation regarding the essential nature of the kinetic energy
is the fundamental observation behind this more general approach.

8.7.1 Alternate Points of View

The purpose for this section is to present an approach to formulating multidegree of
freedom problems in a very general way, suitable for computer implementation. To
this end, the familiar slider-crank mechanism is analyzed as a multidegree of freedom
mechanism to demonstrate the approach. The system is shown in several forms in Figure
8.5.
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Figure 8.5: Three Approaches to Modeling a Slider-Crank Mechanism

8.7.1.1 (A) �SDOF Model

At the top of the �gure, there is the familiar form for the slider-crank mechanism, modeled
as a single degree of freedom system. The kinematics for this system are developed in
Chapter 2 and the dynamic analysis is detailed in Chapter 7. Knowledge of the one
generalized coordinate, �1, is su¢ cient to determine the complete geometry of the system,
and �1, with its time derivatives, fully describes the system dynamics.

8.7.1.2 (B) �9 DOF Model

In the middle of the �gure, the disassembled slider-crank is shown, consisting of three
separate bodies. The system is constrained to move in a plane, so each body has three
degrees of freedom. This gives a total of nine degrees of freedom for the model (note
that nothing is said as yet about connecting the bodies). Seen is this way, a suitable set
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of generalized coordinates is fqg = col(x1c; y1c; �1; x2c; y2c; �2; x3c; y3c; �3). In terms of
these generalized coordinates, the system kinetic energy is

T =
1

2
[M1

�
_x21c + _y21c

�
+ J1c _�

2

1c

+M2

�
_x22c + _y22c

�
+ J2c _�

2

2c

+M3

�
_x23c + _y23c

�
+ J3c _�

2

3c] (8.72)

where

M1; J1c are the mass and mass moment of inertia of the crank with respect to the crank
center of mass;

M2; J2c are the mass and mass moment of inertia of the connecting rod with respect to
the rod center of mass;

M3; J3c are the mass and mass moment of inertia of the slider with respect to the slider
center of mass.

Note that the form for the contribution from each body is exactly the same. This facili-
tates computer formulation of the problem. When the Lagrange form is applied to this
system, the result is nine ordinary di¤erential equations (ODEs), all of the same general
form.

The system connectivity is expressed in the form of the loop equations, understood as
equations of constraint. For each body, assume a body coordinate system oriented with
the U�axis along the body and the V�axis perpendicular in the usual fashion, but with
the origin in each case at the body center of mass. Then the left end connection for
each body has the body coordinates (�uic; 0) and the right end connection has body
coordinates (Li � uic; 0) ; where Li is the overall length of the body. The eight equations
of constraint, written in terms of the generalized coordinates, are these:

� Crank Pivot Stationary:
x1c � u1c cos �1 = 0 (8.73)

y1c � u1c sin �1 = 0 (8.74)

� Crank and Connecting Rod Joint, Point 1b and Point 2a Must Coincide:
[x2c � u2c cos �2]� [x1c + (L1 � u1c) cos �1] = 0 (8.75)

[y2c � (L2 � u2c) cos �2]� [y1c + (L1 � u1c) sin �1] = 0 (8.76)

� Connecting Rod and Slider Joint, Point 2b and Point 3a Must Coincide:
[x3c � u3c cos �3]� [x2c + (L2 � u2c) cos �2] = 0 (8.77)

[y3c � u3c sin �3]� [y2c � (L2 � u2c) sin �2] = 0 (8.78)
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� Slider Only Translates Without Rotation:
y3c = 0 (8.79)

�3 = 0 (8.80)

All of this means that there is a system of nine ODEs and eight algebraic-trigonmetric
equations required to describe the system. Such a system is called a system of Di¤erential
Algebraic Equations (DAEs), and special methods are required for their solution.

Notice the similarity in form for all the equations of constraint. This similarity is the sort
of thing that facilitates computer implementation. But preserving the similarity requires
neglecting to take advantage of simpli�cations that are evident in the particular problem.
Computer implementation thrives on uniformity of approach but dies on special cases!

8.7.1.3 (C) �5DOF Model

Four of the eight equations of constraint simply express lack of motion, either that a
point does not move in a particular direction or that a body does not rotate. Con-
straints of this type can be incorporated into the computer formulation to signi�cantly
reduce the problem size, although the fundamental nature of the formulation remains
unchanged. For the slider-crank, consider the �ve degree of freedom model shown in
the part C of Figure 8.5 where the generalized coordinate vector is then reduced to
fqg = col (�1; x2c; y2c; �2; x3c). In terms of these �ve generalized coordinates, the ki-
netic energy is

T =
1

2
[J1o _�

2

1

+M2

�
_x22c + _y22c

�
+ J2c _�

2

2c

+M3 _x
2
3c] (8.81)

where all the parameters remain the same as previously, except that the crank mass
moment of inertia with respect to the rotation axis is used, rather than the center of
mass value. This formulation has the advantage that no data are required for M1; u1c or
for J3c.

In writing the kinetic energy in this form, four of the constraints are directly incorporated
in a manner similar to that done in Chapter 2, but the system retains �ve degrees of
freedom. The other four constraints still apply in slightly modi�ed form:

� Crank and Connecting Rod Joint, Point 1b and Point 2a Must Coincide:
[x2c � u2c cos �2]� L1 cos �1 = 0 (8.82)

[y2c � (L2 � u2c) cos �2]� L1 sin �1 = 0 (8.83)
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� Connecting Rod and Slider Joint, Point 2b and Point 3a Must Coincide:

[x3c � u3c cos �3]� [x2c + (L2 � u2c) cos �2] = 0 (8.84)

[y3c � u3c sin �3]� [y2c � (L2 � u2c) sin �2] = 0 (8.85)

The result of this formulation is a system of only �ve ODEs along with four algebraic-
trigonometric equations. The bene�t is a smaller system, but it is still a system of DAEs.

8.7.2 Comparisons

With either of the constrained systems approaches, the 9 DOF model or the 5 DOF
model, the result is a system of equations described by what are called sparse matrices,
that is, matrices with relatively few nonzero elements. In comparing the loop closure
method that is presented throughout this book, with the constrained system technique
used in the DADS computer code, Haug, et al. [3; p. 2] say this:

The loop closure method generates equations that require closure of each
independent loop of the linkage. The resulting nonlinear equations are then
di¤erentiated to obtain the smallest possible number of independent equa-
tions of motion, in terms of a minimum number of system degrees of freedom.
Thus, the loop closure method generates a small number of highly nonlinear
equations that are solved with standard numerical integration methods. The
constrained system modeling method, on the other hand, explicitly treats
three degrees of freedom for each element (in the plane). Algebraic equations
prescribing constraints between the various bodies are then written and ele-
mentary forms of equations of motion for each body are written separately.
The constraint equations prescribing assembly of the mechanism are adjoined
to the equations of motion through use of Lagrange multipliers (see below).
Thus, one treats a large number of equations in many variables. These equa-
tions may be solved by an implicit numerical integration method that itera-
tively solves a linear matrix equation. The saving grace of this technique is
that the matrix that arises in the iterative process is sparse. That is, only
three to ten percent of the elements of the matrix are di¤erent from zero.

They further say "It has been shown that it is usually more e¢ cient to solve large
systems of sparse equations, rather than smaller systems with greater percentages of
nonzero entries" [3; p. 13]. For a small system, such as the slider-crank, computational
e¢ ciency is a minor matter, but for large systems, such as a full automobile suspension
or a human body moving in three dimensions, this becomes much more signi�cant.
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8.7.3 Lagrange Multipliers

The application of Lagrange multipliers is a widely used technique for incorporating
constraints into various systems. In the context of di¤erential equations, the essence of
the technique for incorporating constraints is

1. Express the constraints in homogeneous form, as done above;

2. Add the constraint to the di¤erential equation with an unknown multiplier (tradi-
tionally denoted �);

3. Solve the resulting system of equations, to give the generalized coordinates and the
Lagrange multiplier values.

This is not a simple process, but it is available in an automated form in some computer
program packages such as Matlab

TM
, GNU Octave, and perhaps others like SciLab and

Sage. Carrying this through to application is beyond the scope of the present discussion,
but the reader should be aware that there exist methods and software to deal with this
approach.

8.8 Conclusion

While there are many useful machines that involve a single degree of freedom only, there
are many more that have many degrees of freedom. This becomes especially true when
motion in three dimensions is considered. The application of the Lagrange formulation
to the whole problem of multidegree of freedom dynamics provides a systematic approach
to the equations of motion for such systems. Without the correct equations of motion,
all e¤orts to obtain a solution are pointless.

The whole �eld of multidegree of freedom dynamics is growing rapidly, particularly in re-
sponse to increases in available computer power. The ability to model real systems with
many degrees of freedom opens up the opportunity to analyze systems of great com-
plexity, systems like complete internal combustion engines, agricultural and construction
machinery, and even human and animal body motion.
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Problems

For all problems in this set, there are two parts. First, develop all of the kinematic
analysis required to compute everything needed for computer solution of the equations
of motion. Carry the analysis as far as is practical in closed form. If a computer solution
is necessary, determine the type of numerical method to be used and cast the equations
in a suitable form. Second, determine the equations of motion for the system. As in the
problems of chapter 7, a subscript c on a moment of inertia indicates that the reference
point is the center of mass, while a subscript o indicates that the reference point is a
�xed pivot.

8-1 The two rollers are connected by links of length L1 and L2. All of the geometric
dimensions, mass, and mass moment of inertial values shown are assumed to be known.
The system is released in the con�guration shown and allowed to fall under gravity. Take
q1 and q2 as generalized coordinates.

8-2 The mass M1 moves horizontally under the in�uence of the force F (t), and the
restraining forces due the spring and the damper. The pendulum swings freely from the
translating mass under the in�uence of gravity. The mass M1 and M2 are known, as are
the mass moment of inertia J2c and the distance D:

8-3 The masses M1 and M2 slide without friction, other than the viscous friction of the
dashpot with coe¢ cient B. The force F (t) acts on M2. The spring constant, K, the
angle C, and the distance D, are all known.

8-4 The large ring rolls without slipping on the two small rollers, and the small disk rolls
without slipping inside the ring. All masses, mass moments of inertia, and radii shown
in the �gure are known. The mass moment of inertia values are each with respect to the
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body center of mass. When � = � , the disk contacts the inside of the ring such that
points p and q are in contact.

8-5 For the double pendulum, the length of the upper pendulum is L, and it has mass
M1 and mass moment of inertia J1o. For the lower pendulum, the distance from the
attachment point to the center of mass is R, the mass is M2, and the mass moment of
inertia is J2c: The torsional spring is relaxed with the two pendula are aligned (� = �).

8-6 The �gure shows a large church bell being rung by a small person hanging on the end
of the bell rope; the person is completely o¤ the �oor. At the center of the wheel, there
is the trunnion axel; the bell, bell yoke, and the wheel rotate together about this point.
The mass of that complete assembly is Mb, the enter of mass is below the rotation axis
by a distance C1; and the mass moment of inertia for the assembly is Jbo. The clapper is
supported at distance C2 above the bell rotation axis, and it has mass Mclapper and mass
moment of inertia Jco. The clapper center of mass is a distance C3 below the support
point. The problem is only concerned with time when the clapper is not in contact with
the side of the bell. The impact event that occurs when the clapper strikes the bell
requires special handling, a matter beyond the scope of the present problem.

8-7 A bell crank pivots on the slider that moves in a vertical guide (there is no gravity
here). The system is driven by the external force F (t) applied to the slider and the
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torque T acting on the wheel. As the wheel rotates, the pin on the wheel engages the
slot in the bell crank. The signi�cant masses are: (1) the slider, with massMS, the wheel
with mass moment of inertia Jc; and the bell crank with mass Mb and centroidal mass
moment of inertia Jbc. The bell crank center of mass is located the the body coordinates
(uc; vc). The mass of the dashpot is neglected, although its force must be included.

8-8 Torsional vibration is often excited by a prime mover with unsteady torque, such as
an internal combustion engine, making it desirable to attempt to torsionally isolate the
load from the driving torque oscillations. This topic is examined in much more detail in
the last chapter of the current book. The �gure shows a rather crude attempt to devise
a torsional isolation coupling. The prime mover is station 1, the coupling is stations 2
and 3, and the driven load is station 4. The shaft between the prime mover and the
coupling has torsional sti¤ness K12, and that between the coupling and the load is K34.
The coupling springs, Kc, have free length So; the spring are attached at radius R on
stations 3 and 4. The length of these springs changes due to relative rotation between
stations 3 and 4, thus transferring torque to the load. The unsteady torque of the prime
mover is T1 (t), and the load torque acting on station 4 is T4

�
�4; _�4

�
. All sti¤ness and
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mass moment of inertia values are known.

8-9 The �gure shows two sliders in a horizontal guide linked by a spring. The whole
assembly is tied to the left support through a dash pot. There are also two links joining
the two sliders, and a force F (t) applied at the joint between the two links. There is
no gravity to be considered. All geometric dimensions, spring rate, dashpot coe¢ cient,
masses, and mass moments of inertia are known.

8-10 The �gure shows two sliders with identical mass and mass moment of inertia values,
one operating in a straight guide while the other follows a circular arc. A spring of sti¤ness
K connects the two sliders. Take z and � as generalized coordinates.

8-11 This problem is in some ways similar to the one preceding it, but this time, the
straight guide is itself pivoted at the origin. As before, the two sliders have identical
mass and mass moments of inertia, while the guide, #3, has mass moment of inertia J3o.
The dimensions (R;C; �) and the spring rate, K, are all known. Choose appropriate
generalized coordinates to write the equations of motion.
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Chapter 9

Internal Forces and Reactions

9.1 General Comments

In previous chapters, the focus is on obtaining the system equations of motion for a
machine, and on methods for solving the resulting di¤erential equations. In particular,
the emphasis is on avoiding the need to describe and deal with as many of the forces in
the system as possible. Energy based scalar formulations, employing either Eksergian�s
method or the Lagrange equation of motion, are used to (1) avoid the need to deal with
the vectorial nature of force relations, and (2) to avoid dealing with often unknowable
forces like bearing reactions and internal joint forces. Forces that cause motion are
included within the energy based formulation, but forces that are the result of motion
are mostly avoided. In Chapter 6, the forces that cause a body to be in equilibrium (a
special state of motion) are analyzed, but nonworking constraint forces do not enter the
analysis. In Chapters 7 and 8, system motions are described in terms of external forces
that do work on the system, but nonworking external forces and internal forces do not
enter the equations of motion. The ability to determine the equations of motion without
the need to consider internal forces and nonworking external forces is a great advantage.

When the ultimate objective is engineering design, determination of the forces is often
an essential requirement. This is clearly necessary as a �rst step towards stress analysis,
bearing design, de�ection evaluation, and other force-based design considerations. When
the forces must be evaluated, it is necessary to deal with Newton�s Second Law of Motion
and the resulting vector equations. In that regard, this chapter is much like the material
in elementary statics and dynamics, but with two distinctions: (1) the emphasis is on
real machine systems, rather than idealized problems, and (2) a powerful approach to
kinematics is available here that is usually not accessible in earlier courses. For the
purposes of this chapter, the topic is discussed largely in the context of single degree of
freedom systems where it is most easily understood, although the same ideas apply in
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general.

An external force or moment that bears on the machine system, often through the foun-
dation or other support structure, is called a reaction. A knowledge of the reactions is
essential for the design of proper supports for a machine. The time-varying component of
the reaction is often called a shaking force or shaking moment, descriptive terms because
these reactions tend to shake the supporting structure. A machine designer is often asked
to provide information about the reactions for use by the person charged with the design
of the support structure. Alternatively, the designer of the supports may �nd it necessary
to determine those reactions.

Forces of interaction between two moving members of a system are called internal forces,
a term intended to convey the idea that they are internal to the mechanical system.
Internal forces are of great concern to a machine designer because they a¤ect the choice
of materials and sizes for the components. Stress, de�ection, bearing load capacity,
wear, and energy consumption are all governed by the internal forces, so a machine
design cannot be considered complete until the internal forces are determined and found
acceptable for the �nal design. The term internal force is extended to include forces
internal to a single member (as shown in the latter part of this chapter) as well as the
interaction force between two members.

9.2 Governing Equations

To begin the consideration internal force determination, consider a rigid body moving
in two dimensions as a part of a single degree of freedom machine, for which Newton�s
Second Law [1] provides three equations of motion:X

i

Fxi = M �xc =M
�
��Kcx + _�

2
Lcx

�
(9.1)X

i

Fyi = M �yc =M
�
��Kcy + _�

2
Lcy

�
(9.2)X

i

Mci = Jc�� = Jc

�
��K� + _�

2
L�

�
(9.3)

where

� is the generalized coordinate associated with the single degree of freedom,

(xc; yc) are the center of mass coordinates,

� is an angular coordinate describing the orientation of the body,
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M is the body mass,

Jc is the body mass moment of inertia with respect to the center of mass.

If three dimensional motion were involved, there would be six equations, but the same
principles would apply. Now separate each of the force and moment sums into a sum of
internal loads (

X
F I) and a sum of external loads (

X
FE), so that after rearrangement,

the equations read

X
i

F I
xi � ��MKcx = _�

2
MLcx �

X
i

FE
xi (9.4)X

i

F I
yi � ��MKcy = _�

2
MLcy �

X
i

FE
yi (9.5)X

i

M I
ci � ��JcK� = _�

2
JcL� �

X
i

ME
ci (9.6)

Three equations of this sort can be written for every rigid body in the system. The left
side of each equation contains the unknown internal forces and ��; all to be determined.
On the right, there are the centripetal acceleration terms and various externally applied
(known) forces and moments that drive the motion. The objective here is to evaluate
the internal force, moment, and acceleration terms (on the left side), but this raises the
question of what to do with the terms on the right.

Notice also that the eventual solution will provide a value for the acceleration, ��: This
last should not be surprising since, in elementary mechanics courses, the application of
Newton�s Second Law is the usual approach to determining an acceleration. It should be
noted, however, that this acceleration determination is independent of acceleration found
through either Eksergian�s equation or the Lagrange equation, but the two acceleration
calculations must be in agreement. Both should be made and compared; this is an
important quality check.

In a computer implemented force analysis, the process is that of stepping the system
through a sequence of positions representing the full operating cycle of the machine
under study, evaluating all of the forces (and the acceleration) at each position. For the
case of a rotating machine, this usually means one full crank revolution, although the
exact meaning must be determined in the context of each application. In that process,
position values are assigned sequentially, perhaps in 1 degree increments of shaft rotation
or something similar. But what value should be used for the associated velocity, the
value for _�? This is the analyst�s dilemma.

There are three standard engineering approaches to the problem of determining reactions
and internal forces, each of which is appropriate to a particular situation. They are the
methods of Statics, Kinetostatics, and Dynamics; their descriptions follow.
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Static Analysis As the name implies, this approach assumes that all components
are in equilibrium, and the forces are determined on this basis. This method is valid
for a mechanism that is motionless under load, and may also be appropriate for very
slowly moving (quasistatic) machines. This is the simplest of the three approaches, and
this method has been used widely for many years. Unfortunately, it is often applied to
situations where it is de�nitely not valid.

Kinetostatic Analysis Many mechanisms move without great changes in speed. It
may be possible to assume an approximate description of the motion, usually the rela-
tively simple expression _� = constant. The kinetostatic method attempts to account for
the e¤ects of motion by assuming that an approximate motion is the true motion, and
including some of the induced inertial e¤ects. For a single degree of freedom system, a
description of the type _� = 
 = constant incorporates (approximately) all of the cen-
tripetal terms (
2Lj), but completely neglects the generalized acceleration terms (��Kj).
This topic is discussed brie�y by Paul [2] and, in the context of cam systems, by Norton
[3] : (There is more to be said about the nature of this process later.)

Dynamic Analysis When speed variation is signi�cant, there is often no adequate,
simple approximate description of the motion. In that case, it is necessary �rst to de-
termine the motion by solving the equation of motion, and then to use that dynamic
solution for the determination of the internal forces and reactions. For most systems, the
dynamic analysis is the most di¢ cult and time consuming of the three approaches. At
the same time, however, it is the most correct and reliable.

In summary, the entire issue is a question of just how to handle the inertial terms. The
static analysis is strictly applicable only to systems in equilibrium, which often �but
not always �means �motionless.� It may be a very reasonable approximation in some
other cases involving slow, apparently non-accelerated motion. The kinetostatic analysis
is a well known, widely used approximate analysis that gives acceptable results in many
cases. The dynamic analysis is consistently the most correct, most di¢ cult, and most time
consuming of the three approaches. The choice of an appropriate method of analysis is
an engineering judgment. Static analysis is adequately covered in elementary courses; the
development below is con�ned to the kinetostatic and dynamic analysis methods. The
discussion continues in terms of speci�c examples to illustrate the concepts described
above.

9.3 Spring-Loaded Trammel

Consider the application of the approaches previously discussed to the determination
of the forces in the trammel system shown in Figure 9.1. For this system, there is no
meaningful "steady operating condition," and consequently the kinetostatic analysis is
not applicable. The dynamic analysis is the only option available.
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Figure 9.1: Spring Supported Trammel With Impulsive Load

9.3.1 Application of Newton�s Second Law

It is necessary to de�ne the force components within the system, and for that purpose,
consider Figure 9.2 where Free Body Diagrams are shown for each component.

The equations of motion for the link, body 1 are:

�F1 + F3 = m1

�
��

�
�L
2
sin �

�
+ _�

2
�
�L
2
cos �

��
(9.7)

F2 � F4 � w1 = m1

�
��

�
L

2
cos �

�
+ _�

2
�
�L
2
sin �

��
(9.8)

L

2
(F1 sin � � F2 cos � + F3 sin � � F4 cos �) = I1c

h
�� � (1) + _�2 � (0)

i
(9.9)

Note that positive moments on body 1 are taken clockwise to be consistent with the fact
that the angle � opens clockwise in the positive sense. For the lower slider, body 2; the
equations of motion are:

F1 � FS (x) = m2

h
�� (�L sin �) + _�2 (�L cos �)

i
(9.10)

R2 � F2 � w2 = m2

h
�� � (0) + _�2 � (0)

i
(9.11)

0 = I2c

h
�� � (0) + _�2 � (0)

i
(9.12)

Mechanics of Machines c 2019 Samuel Doughty



306 CHAPTER 9. INTERNAL FORCES AND REACTIONS

Figure 9.2: Free Body Diagrams for the Trammel Mechanism Components

The second and third equations are static force relations because there is no possibility for
motion normal to the guide or for rotational motion. Note that the constitutive equation
for the spring, expressing FS (x) = KS (L cos � � xo), is required before this system of
equations is complete. Similarly, it is evident that, because of the one dimensional motion
of the slider, there is only one actual equation of motion resulting. The other is simply
a static equilibrium relation. For the vertical axis slider, body 3:

F4 � w3 � Fy (t) = m3

h
�� (L cos �) + _�

2
(�L sin �)

i
(9.13)
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Collecting all of the nontrivial equations together gives the following matrix equation:26666666664

�1 0 +1 0 m1
L
2
sin �

0 +1 0 �1 �m1
L
2
cos �

L
2
sin � �L

2
cos � L

2
sin � �L

2
cos � �Ic

1 0 0 0 m2L sin �

0 0 0 1 �m3L cos �

37777777775

8>>>>>>>>><>>>>>>>>>:

F1

F2

F3

F4

��

9>>>>>>>>>=>>>>>>>>>;

=

8>>>>>>>>><>>>>>>>>>:

0

w1

0

KS (L cos � � xo)

w3 + Fy (t)

9>>>>>>>>>=>>>>>>>>>;
+ _�

2

8>>>>>>>>><>>>>>>>>>:

�m1
L
2
cos �

�m1
L
2
sin �

0

�m2L cos �

�m3L sin �

9>>>>>>>>>=>>>>>>>>>;
(9.14)

or
[C] fFg = fR1g+ _�

2 fR2g (9.15)

As mentioned previously, it is important to note that the system acceleration, ��; is
calculated in the system solution, along with the several internal forces. Newton�s Second
Law has always furnished the acceleration in earlier approaches to dynamic situations,
and so it does here again.

In carrying out the force analysis, it is evident that both position and velocity are needed
as inputs to the force calculation at each position. What source provides these values?
The answer is that the force solution must be combined with, or follow, the motion
solution. This situation o¤ers three possible approaches:

1. The complete motion solution can be generated �rst, based on numerical solution
of Eksergian�s equation over some suitable time interval with position, velocity, and
acceleration computed at each time point and saved for later use. Then the position
and velocity values can be employed in the later force solution process to produce
forces (and an alternate acceleration value) at each position.

2. The motion solution can be generated by numerical solution of the equation of
motion, using acceleration values determined from the Eksergian equation, followed
by a force and acceleration calculation made at each time step. In many cases, it
is not necessary to make a force calculation for every time step, but rather only at
larger time intervals such as, for example, every �fth time step.
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3. The motion solution can be generated by numerical solution of the equation of
motion, integrating the acceleration as calculated in the force solution. This ne-
cessitates a complete force solution at every time step, but that may well be the
intent anyway.

The �rst approach is conceptually least complex, keeping the motion solution and the
force solution as entirely separate processes to be applied sequentially. The second ap-
proach keeps the two processes separate, but requires applying them alternately as the
time integration proceeds. The third approach, using the force solution to develop the
acceleration values, is more complex and relatively slow to execute. This is because of
(a) the large number of force solutions required, and (b) the overall complexity of the
process. For this reason, only the �rst or second approaches are recommended here. The
second approach is presented in �ow chart form in Figure 9.3.

Figure 9.3: Flow Chart for the Second Approach to Force Calculations

In the event that the �rst or second approach is employed, two values for the system
acceleration are available, one obtained from Eksergian�s equation, and the other from
the force solution. These must be in very close agreement; if not, it indicates either an
algebraic or computational error and no con�dence should be placed in the computed
results. For this reason, automatic checking needs to be built into a computer code to
verify that these solutions agree on the acceleration value at each position. Otherwise,
the whole exercise is pointless!
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Returning to the example of the impact driven trammel, the system data is the same as
that used in the motion simulation of Chapter 7. The motion was previously developed
in Chapter 7, so it is certainly easiest to simply add the force calculation as an additional
step after the motion calculation is complete. A subroutine for the force calculation,
implementing the solution of equation (9.12) above follows.

Subroutine for Trammel Dynamic Force Calculations

sub force
if t<tau then

Fy=Fym*sin(pi*t/tau)
else

Fy=0
end if
mat coef=zer
mat R1=zer
mat R2=zer
coef(1,1)=-1
coef(1,3)=+1
coef(1,5)=m*L/2*sin(theta)
R2(1)=-m*L/2*cos(theta)

coef(2,2)=+1
coef(2,4)=-1
coef(2,5)=-m*L/2*cos(theta)
R1(2)=wt1
R2(2)=-m*L/2*sin(theta)

coef(3,1)=L/2*sin(theta)
coef(3,2)=-L/2*cos(theta)
coef(3,3)=L/2*sin(theta)
coef(3,4)=-L/2*cos(theta)
coef(3,5)=-Ic

coef(4,1)=+1
coef(4,5)=mx*L*sin(theta)
R1(4)=K*(L*cos(theta)-xo)
R2(4)=-mx*L*cos(theta)

coef(5,4)=1
coef(5,5)=-my*L*cos(theta)
R1(5)=wt3+Fy
R2(5)=-my*L*sin(theta)
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mat coefi=inv(coef)

mat S1=coefi*R1
mat S2=coefi*R2
mat S2=(dth^2)*S2
mat Stot=S1+S2

F1=Stot(1)
F2=Stot(2)
F3=Stot(3)
F4=Stot(4)
ddthn=Stot(5)

if abs(Stot(5)-ddthe)>1e-12 then
print "accel error"
print "ddthe = ";ddthe;" Stot(5) = ";Stot(5)
get key xxx

end if
F1sav(ik)=F1
F2sav(ik)=F2
F3sav(ik)=F3
F4sav(ik)=F4
ddthnsav(ik)=ddthn
tfsav(ik)=t

end sub

Most aspects of the subroutine are self-explanatory; the notation follows closely that
used in the theoretical development. It is understood that the motion simulation has
been previously completed, and this routine is called for every value of time (t) for which
forces are to be calculated. At each of those values, the motion simulation provides values
for � (t), _� (t), and �� (t). Note the test near the end of the subroutine to compare the
acceleration from the simulation with the acceleration computed along with the forces.
If at any point they di¤er by more than an acceptable amount (10�12 in this case), the
subroutine pauses; this pause never occurs in actual program execution.

The computed force results are shown in Figures 9.4 and 9.5. Each of these plots shows
the two components of force at a joint, plotted one against the other; with time as the
implied parameter connecting the values. Thus, in Figure 9.4, the force curve begins with
the static forces, approximately (F1; F2) = (20; 80) lb (reading from the plot). During
the time of the vertical impulse, the forces each increase greatly to maximum values
of approximately 600 lb and 550 lb, respectively. As the impact diminishes, the force
components also drop, both becoming negative near the end of the impact. This point is
marked with an X at approximately (�70;�110). The continued motion is periodic (see
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Figure 7.8), and the forces repeat a trajectory that looks like an inclined letter "J." For
this example, it is clear that the most severe loading occurs only once, shortly after the
beginning of the impulse, but is then followed by a periodic loading-unloading- reverse
loading cycle.

Figure 9.4: Locus of the Force Components F1 and F2

Similar comments (with di¤erent force values) also apply to Figure 9.5 where, again, the
end of the impulse is marked with a letter X.

Figure 9.5: Locus of the Force Components F3 and F4

It should be noted that, for each of these plots, for any point on the curve, the distance
of the point from the origin gives the magnitude of the shear force in the connecting pin,

Mechanics of Machines c 2019 Samuel Doughty



312 CHAPTER 9. INTERNAL FORCES AND REACTIONS

and the direction of the line to that point provides the direction of the shear force. It is
clear that the shear forces varies considerably, both in magnitude and direction, as the
system moves through a cycle.

9.4 Slider-Crank Force Analysis

The slider-crank mechanism has been previously discussed in several contexts, but its
central role most in internal combustion engines and reciprocating compressors makes it
necessary to consider the internal force analysis as well. It also provides an opportunity
to compare two approaches to the internal force problem as discussed in section 9.2. In
order to keep the problem as simple as possible while still representing a real case, it is
presented here in the context of a motor driven, single cylinder reciprocating compressor,
operating in steady state. The presentation begins with a system description.

9.4.1 System Description

The system is a reciprocating air compressor driven by an induction motor; there are
countless such machines in actual use. The compressor is a typical slider-crank machine,
of the sort shown in Figure 2.7 except that here the o¤set, ", is zero.

The compressor employs poppet valves that open and close in response to di¤erential
pressure across the valves; there are no springs or lifting mechanisms involved. Figure
9.6 that shows a plot of cylinder pressure versus wrist pin position; this is equivalent to a
scaled pressure-volume diagram for the compression process. The suction manifold is at
atmospheric pressure, 101000 Pa, while the discharge manifold is constant at 687000 Pa.
(All pressure references are to absolute pressure, not gauge pressure.) The crank case is
vented, so that the underside of the piston is at atmospheric pressure at all times.

Consider the compression process to begin at point (1) which corresponds to crank angle
� = ��. The cylinder is already �lled with air at atmospheric pressure, so as the piston
advances toward the head (� increasing), the pressure rises according to the polytropic
law,

PV  = Constant (9.16)

The polytropic exponent for air is taken as  = 1:41.

When the cylinder pressure reaches the discharge manifold pressure, point (2), the dis-
charge valves are assumed to instantly open to allow �ow at discharge pressure into the
discharge manifold. This is somewhat of an idealization; in reality, the cylinder pressure
must rise slightly above the discharge manifold pressure in order to open the valves and
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drive the �ow; this detail is omitted here. Flow into the discharge manifold continues
until the end of the stroke, the minimum cylinder volume condition with � = 0. At this
point, point (3), the discharge valves close and there is no further �ow, leaving some air
trapped in the cylinder.

As the crank continues to advance, _� > 0, the gas previously trapped in the cylinder
re-expands. The re-expansion follows the same polytropic law, except that there is a
di¤erent constant because it is a smaller mass of air. When the pressure of the re-
expanding air reaches manifold pressure, (4), the intake valves open to allow a fresh air
charge to be drawn in at atmospheric pressure. Again, this is somewhat idealized, but
the details of the �ow pressure are not the main point of this discussion. This re�lling
process continues until the piston reaches BDC with � = +�, at which point, the entire
cycle is repeated again and again, endlessly.

Figure 9.6: Plot of Cylinder Pressure (Pa) versus Wrist Pin Position (m)

The compressor is driven by a three phase induction motor, coupled to the crank through
a 3 : 2 speed reduction. For purposes of this problem, only steady state operation is of
interest, so the simple, linear torque-speed approximation presented in Appendix 5.1.4.1
is adequate. Better motor models could also be employed, such as that of 5.1.4.3. The
necessary system data is given in Tables 9.1, 9.2, and 9.3 below.
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Table 9.1 Compressor Mechanical Data

R = 0:025 m Crank Radius

L = 0:089 m Connecting Rod Length

D = 0:061 m Cylinder Bore Diameter

u1c = 0:0 m Crank CM Location�

u2c = 0:022 m Connecting Rod CM Location�

W1 = 47:8 N Crank Weight

W2 = 1:2 N Connecting Rod Weight

W3 = 1:9 N Piston Ass�y Weight

J1o = 0:0157 kg-m2 Crank MMOI wrt Rotation Axis

J2c = 0:000339 kg-m2 Connecting Rod MMOI wrt CM

Vmax = 1:56352 � 10�4 m3 Maximum Cylinder Volume

� Note that vc1 = vc2 = 0

Table 9.2 Thermodynamic Cycle Data

P1 = 101353 Pa Suction Pressure

P2 = 618460 Pa Discharge Pressure

 = 1:41 Polytropic Exponent for Air

Table 9.3 Electric Motor Data

PRated = 750 W Rated Power

NRated = 1689 rpm Rated Speed

NSynch = 1800 rpm Synchronous Speed

JMtr = 0:02 kg-m2 Motor Rotor MMOI

n = 3=2 Speed Reduction to Load

9.4.2 Equations of Motion

The system for analysis is shown in schematic form in Figure 9.7 where the upper part
is a schematic diagram of the slider-crank while the lower part shows free body diagrams
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for each component. All of the necessary kinematic analysis is available in Chapter 2, so
it is not repeated here. The equation of motion, based on Eksergian�s equation, is found
in Chapter 7. What remains new here is to write the equations of motion for each of the
several components, equations that can be solved to give the connection forces.

Figure 9.7: Slider-Crank Schematic and Free Body Diagrams

Note that in the naming of the many forces involved, in most cases an odd subscript
number indicates a horizontal force while an even subscript denotes a vertical force (with
the exception of F7 that is vertical). The couple Mem is the electromagnetic torque from
the motor, a function of rotor speed and applied directly to the crank. The frame of
the machine is assumed to be supported at rest equilibrium by two external forces and a
moment, Rx; Ry; and Mz, all acting at the crank axis of rotation.

The �rst step is to write Newton�s Second Law for each component. Note that, in
summing moments on the crank, it is more convenient to sum moments about the crank
pivot than about the center of mass. This requires the use of the mass moment of inertia
for the crank and motor assembly with respect to the axis of rotation, understanding
that J� is actually J1o + JMtr. The resulting equations follow below:

Crank:
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F1 � F3 = M1

�
��K1cx + _�

2
L1cx

�
(9.17)

F2 � F4 = M1

�
��K1cy + _�

2
L1cy

�
(9.18)

F3R sin � � F4R cos � = J��� � n �Mem

�
_�
�

(9.19)

Connecting Rod:

F3 � F5 = M2

�
��K2cx + _�

2
L2cx

�
(9.20)

F4 � F6 = M2

�
��K2cy + _�

2
L2cy

�
(9.21)

F3u2c sin�+ F4u2c cos�

+F5 (L� u2c) sin�

+F6 (L� u2c) cos�

= J2c

�
��K� + _�

2
L�

�
(9.22)

Piston:

F5 =
M3

�
��Kx + _�

2
Lx

�
+ [Pcyl (�)� Patm]Ap

(9.23)

F6 � F7 = 0 (9.24)

Frame:

Rx � F1 + [Pcyl (�)� Patm]Ap = 0 (9.25)

Ry � F2 + F7 = 0 (9.26)

Mz + x � F7 = 0 (9.27)

Ignoring for the moment the static frame reaction equations, it is useful to recast the
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eight dynamic equations in matrix form. When this is done, the result is this:26666666666666666664

1 0 �1 0 0 0 0 �M1K1cx

0 1 0 �1 0 0 0 �M1K1cy

0 0 Z33 Z34 0 0 0 �J�
0 0 1 0 �1 0 0 �M2K2cx

0 0 0 1 0 �1 0 �M2K2cy

0 0 Z63 Z64 Z65 Z66 0 �J2cK�

0 0 0 0 1 0 0 �M3Kx

0 0 0 0 0 1 �1 0

37777777777777777775

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

F1

F2

F3

F4

F5

F6

F7

��

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(9.28)

= _�
2

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

M1L1cx

M1L1cy

0

M2L2cx

M2L2cy

J2cL�

M3Lx

0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

+ n �Mem

�
_�
�

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0

0

�1

0

0

0

0

0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

+ [Pcyl (�)� Patm]Ap

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0

0

0

0

0

0

1

0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;
where

Z33 = R sin �

Z34 = �R cos �

Z63 = u2c sin�

Z64 = u2c cos�

Z65 = (L� u2c) sin�

Z66 = (L� u2c) cos�

In this form, it is fully evident that the internal forces, F1 : : : F7 and the crank accelera-
tion, �� are each functions of:

� crank angular position, �;
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� crank speed, _� (squared);

� motor torque, n �Mem, modi�ed by the transmission ratio;

� pressure di¤erence acting on the piston, [Pcyl (�)� Patm].

Every term in the coe¢ cient matrix is either (a) constant, or (b) a function of the angle
�.

As mentioned previously, there are three types of analysis possible. The static analysis
is so primitive as to be near worthless, so it is ignored here. The other two types are
developed below, but before attending to that, consider particularly the three equations
for the frame reactions.

9.4.2.1 External Reactions

Assume for the moment that the internal forces are all known (by whatever means), so
that all that remains is to determine the frame reactions. Equations (9.25), (9.26), and
(9.27) are readily solved to give

Rx = F1 � [Pcyl (�)� Patm]Ap (9.29)

Ry = F2 � F7 (9.30)

Mz = �x � F7 (9.31)

These same three expression apply, no matter how the internal forces are determined, so
there is no need to repeat them again here for each analysis type. Note, however, that
the values produced for the reactions certainly vary from one analysis type to the next.

9.4.2.2 Kinetostatic Analysis

For the kinetostatic analysis, the system is assumed to be running at an assigned speed
(
), and then stepped through crank angles from 0 to 2�: Considering equation (9.28)
under these conditions, note that:

� At every position, the angle is assigned, so that �; �; and x are all known through
the kinematic calculations, along with all the associated velocity coe¢ cients and
velocity coe¢ cient derivatives;

Mechanics of Machines c 2019 Samuel Doughty



9.4. SLIDER-CRANK FORCE ANALYSIS 319

� At the assigned crank angle, the cylinder pressure, Pcyl (�), is readily evaluated
from the cycle description;

� The coe¢ cient of the �rst right side vector is simply 
2; for the kinetostatic analysis
considered an assigned value;

� The motor torque at the assigned speed can be evaluated through the linear model
as Mem (
) ;

In short then, everything necessary to evaluate the coe¢ cient matrix and the right side
vectors is available for the solution of equation (9.28).

Speed Assignment A key element in this analysis is selection of an appropriate
value for the assigned speed. Small air compressors of this sort usually appear to run in
steady state at a constant speed after going through their initial start-up phase. This
evident constant speed would seem to be the appropriate choice for 
 if it were known;
usually, it is not. On the other hand, if the motor has been properly selected for this
application, the steady operation should be close to the rated speed so that the full rated
power is being used. For this reason, the rated speed of the motor is a logical choice
for the assigned motor speed. It must be recalled, however, that for this example, crank
speed is reduced from motor speed, so the assigned crank speed is


 = !rated=n =
176:87

3=2
= 117:91 rad/s (9.32)

where

!rated = rated motor speed, rad/s.

Since the motor speed is assigned as the rated value, it is consistent to use the rated
torque for the motor torque value.

Cylinder Pressure Modeling Referring back to Figure 9.6, the conditions at the
end of the suction stroke are easily determined. At this point, the cylinder volume is a
maximum, and the pressure is atmospheric. Thus, for this point, and for every point on
the compression curve, there is a single constant value, �c, such that

PV  = P1V

1 = �c (9.33)

Similarly, conditions at the end of the discharge are readily found. For point (3) and for
every point on the re-expansion curve, there exists di¤erent constant, �e, di¤erent from
�c, such that

PV  = P3V

3 = �e (9.34)

Mechanics of Machines c 2019 Samuel Doughty



320 CHAPTER 9. INTERNAL FORCES AND REACTIONS

Then the pressure volume relation is described by

P (�) =

8<: min f�c= [V (�)] ; P2g Kx (�) � 0 (upward piston motion)

max f�e= [V (�)] ; P1g Kx � 0 (downward piston motion)
(9.35)

where

�c;�e are as described just above,

V (�) is the cylinder volume for crank angle �

P1 is the suction pressure

P2 is the discharge pressure

The above is all easily programmed for computer evaluation, provided there is the means
to evaluate V (�). The volume swept by the piston is computed as

Vswept = 2RAp

where Ap is the piston area = �D2=4. The maximum cylinder volume is part of the given
data for the compressor. The di¤erence between these two values is an irregularly shaped
volume close to the cylinder head with clearances for the valves and other irregularities.
It is useful to idealize this irregular volume to be considered as a continuation of the
cylindrical cylinder wall to a height dc beyond the extreme piston position. The quantity
dc is called the clearance distance. It must be remembered that it is not an actual physical
distance and cannot be measured with a micrometer. It is a �ctional distance to describe
a �ctional right circular cylinder with the same volume as the clearance volume above
the piston. It is evident that the clearance distance is such that

Vmax = Vswept + Apdc (9.36)

With the clearance distance known, the cylinder volume for any crank angle is

V (�) = Ap (R + L+ dc � x) (9.37)

With these comments in e¤ect, there is no di¢ culty at all in solving the system of equation
(9.28) for a sequence of � values. This has been programmed, and some of the results are
shown in Figures 9.9 and 9.10. It should be noted that, although only the results for F1
and F2 are presented in those �gures, all of the internal forces and the crank acceleration
are determined at every position.
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9.4.2.3 Dynamic Analysis

The fully dynamic force analysis requires that the complete system of equations (9.28)
be solved without assumptions regarding the speed. This means that the actual speed
variation, based on the solution of the di¤erential equation of motion, must be employed
at every position where force calculations are to be performed. That solution requires
a full simulation, with the numerical solution of the di¤erential equation of motion, as
discussed in Chapter 7. The equation of motion for the slider-crank is readily developed
by means of Eksergian�s equation and need not be elaborated here except for a few details.
Everything previously said about modeling the cylinder pressure in connection with the
kinetostatic analysis applies for this analysis as well.

Motor Torque Modeling The whole purpose of the dynamic model is to re�ect the
e¤ect of speed variation, so a dynamic model for the motor torque is required. However,
since only steady state operation is speci�ed, it is implied that the range of speed variation
is limited, not deviating too greatly from the rated speed of 176:87 rad/s. This indicates
that the linear torque-speed relation of Appendix 5.1.4.1 can be employed. The constants
for that model are determined from the rated (motor rotor) speed and power:

co = 68:762637 N-m (9.38)

c1 = �0:36479712 N-m-s (9.39)

These two constants describe the electromagnetic torque acting on the motor rotor.

Steady-State Operation The problem statement indicates that only steady state
conditions are of interest, but the question remains, "what exactly constitutes steady
state?" On the surface, the answer is relatively simple: steady state means that the
crank speed varies in a periodic manner over each crank revolution while the total crank
angle turned increases without limit. In detail, there is a bit more to it!

To achieve steady state operation, each crank revolution must begin with exactly the
same speed. Thus the question comes down to "what is _� when � = 0; 2�; 4�, . . .
such that each cycle will be exactly like every other one? While it is easy to start the
integration of the equation of motion with � = 0, the question remains as to what value
to use for _� at the beginning?

There are several possible approaches to this question, each of which will eventually work
out.

1. The linear model for the motor torque can be replaced by a more detailed model
such that the actual start-up phase can be correctly simulated. When this is done,
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the simulation will eventually settle into steady state operation, and the speed vari-
ation over a cycle can be extracted from the simulation. This has the drawback of
requiring a more detailed model of the motor, but it is entirely feasible. Depending
on the particular problem under consideration, it may be necessary to simulate
a very long time before steady state is reached, with the attendant problems of
computer storage and extended run times.

2. The linear torque-speed model can be used with any reasonably close starting speed,
and it too will eventually settle into the steady state operating mode. The early
part of this simulation should not be taken as steady state; it is based on an
incorrect torque model and di¤ers substantially from the actual physical case. It
will, however, eventually become correct as steady state is approached.

3. The simulation may be performed repeatedly for only one crank revolution with
the starting speed estimate progressively improved each time. For periodicity, the
crank speed at the end of the revolution must exactly match that the beginning.
Thus simulating one cycle allows for a correction to the starting speed based on
the di¤erence between initial and �nal speeds in the previous computer run. This
approach is attractive because only one crank revolution needs to be simulated and
thus each computer run is fairly short. It is less attractive because of the seemingly
unpredictable behavior of the �nal speed with each intended improvement to the
initial speed estimate.

The third approach is employed in preparing this example. It should be emphasized that
in using this approach, it is important to simulate exactly one crank revolution, stopping
exactly at � = 2� if the cycle is begun at � = 0. This may well require modifying
the integration time step to obtain the required termination point. By iteration, it is
determined that the steady state operation is associated with the initial speed _� (t = 0) =
118:29 rad/s:

9.4.3 Slider-Crank Internal Force Results

The result of the steady state simulation are show in Figure 9.8 where both crank speed
and cylinder pressure are plotted against crank angle.

Considering Figure 9.8, the four phases of the compression cycle are clearly evident in
the crank forces.

1. During the re-expansion phase, the crank is accelerated by both the motor torque
and the pressure of the trapped gas;
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Figure 9.8: Plots of Cylinder Pressure (Pa) and Crank Speed (rad/s) versus Crank Angle
�

2. During the suction phase, the crank continues to accelerate under the in�uence of
the motor torque;

3. As compression begins, the rate of acceleration drops, leading eventually to negative
acceleration approaching the discharge stage;

4. During discharge, the crank continues to decelerate, with the speed retarded by the
high pressure gas on top of the piston.

Note that the starting crank velocity, _�o = 118:29 rad/s, is near the lowest speed of all;
the piston is slowed to a stop at the TDC position due to the gas pressure above the
piston.

The main bearing forces, F1 and F2 are plotted in Figure 9.9 and 9.10. These two �gures
show the curves generated by both (a) the kinetostatic analysis, and (b) the dynamic
analysis; they appear a a single curve, indistinguishable to the unaided eye. This indicates
that, for this example, both methods of analysis give almost identical results for these
forces. The same four phases can be seen in these force plots. Note particularly how
strongly F1 is in�uenced by the cylinder pressure; this is in agreement with intuition.

The other matters of interest here are the external reaction forces, Rx and Ry as the crank
goes through a full revolution; these are shown plotted against each other in Figure 9.11.
Again, this �gure shows the results of both (a) kinetostatic analysis (inner curve) and (b)
dynamic analysis (outer curve). This is the only place where there is a visible di¤erence
between the two analysis methods. These forces are determined by employing the values
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Figure 9.9: Crank Force F1 (N) as a Function of Crank Angle � (rad)

of F1 and F2 in equations (9.29) and (9.30). The result is the characteristic egg-shaped
plot.

9.5 A Second Look at the Two Methods

In the kinetostatic analysis, the velocity is assigned a constant value, _� = 
. This has
often been misconstrued in the past as equivalent to saying that �� = 0, but that is not
correct. It is important to distinguish what is actually being done.

For any of the force analysis techniques applied to the slider-crank mechanism, the process
ultimately comes down to solving equations (9.28). This solution, for either technique,
produces force values and a value for ��; the last usually not equal to zero. Such a result
cannot be a solution based on �� = 0. For either technique, evaluating all of the terms
in equation (9.28) requires values for both � and _�: The di¤erence between the two
approaches is in how these two values are provided.

1. Kinetostatic Analysis Both values are assigned at will by the analyst.

(a) The position, �, is assigned based on interest in a particular position, or simply
as a matter of stepping through the whole cycle;

(b) The speed, _� is assigned as a representative value, thought to be reasonably
close to the actual value at the particular position;

(c) Using the same value repeatedly, _� = 
 = constant, is simply an expedient
based on lack of better information. It is a matter of choosing the same
approximate value time and again, rather than an intention to say that �� is
zero.
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Figure 9.10: Crank Force F2 (N) as a Function of Crank Angle � (rad)

(d) Each successive position analyzed represents a point on a di¤erent natural
motion; they are not at all parts of the same continuous motion. The result
is an arti�cial, contrived motion, not one that actually exists in nature.

2. Dynamic Analysis Both values are determined by the dynamic simulation, the
solution of the governing di¤erential equation of motion. That solution provides
values for � (t), _� (t) ; and �� (t), all controlled by the equation of motion subject
to the initial conditions, the result of a true, natural motion of the system. The
analyst has no control at all over these values, other than being able to stop the
process at will.

The example just presented shows that, for some cases, the results of the two approaches
can be quite close. This should not be taken as an indication that this is true in all cases.

9.6 Forces in a Link

The discussion to this point has considered the matter of determining the interconnection
forces within a dynamic mechanism. The development of a system of equations, solvable
for the connection forces, is discussed, based on the sums of forces and moments, and
involving the mass and mass moment of inertia of each member, in each case multiplied by
the appropriate acceleration. The only assumptions involved have been that the bodies
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Figure 9.11: External Reactions, Rx and Ry; Through the Crank Cycle

are rigid and moving in planar motion. However, understood more broadly, the forces
inside a single machine component are also internal forces. For the ideas developed in
this section, a further assumption is made, namely that the body considered is long and
slender, like a link or rod, such that the elementary stress analysis for beams is applicable.
This then applies to a variety of push rods, connecting rods, and actuator links.

For now, consider that all interconnection forces are known for the member shown in the
part shown in Figure 9.12. Note that it is long and slender, as required, and if the section
is not entirely uniform, the variation is at most only small. The coordinate � locates any
section of particular interest. This might be a section where cracks have been found in
service, it might be a suspect location for serious stress conditions, or � may be varied
from 0 to L to describe every point along the length of the link.

To be more speci�c, consider that, for the link shown, the following items have all been
determined: x (t) ; y (t) ; � (t) ; Fx (t) ; and Fy (t). Then consider a cut at the position
shown located by the distance �. The purpose for this discussion is to determine the
internal forces on the section at �, speci�cally T (�) ; V (�) ; andM (�), that is, the tension,
shear, and bending moment at the cut surface.

9.6.1 Inertial Properties

Since the material and all details of the link geometry are assumed to be known, it is
reasonable to assume that the mass per unit length, � (�), is also known. The distance
�c (�) locates the center of mass of the section of the link under consideration (this
is not the entire link, but rather, it is the section to the left of the cut at �). The total
mass of the section under consideration is m (�),

m (�) =

Z �

0

� (�) d� (9.40)
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Figure 9.12: Lower Left Part of the Link, Showing the Internal Forces on the Cut at �

The location of the center of mass of this segment of the link is calculated as

�c (�) =

Z �

0

�� (�) d�Z �

0

� (�) d�

(9.41)

Finally, the mass moment of inertia for this segment, with respect its own center of mass,
is calculated as

Jc (�) =

Z �

0

[�� �c (�)]
2 � (�) d�

=

Z �

0

�2� (�) d�� �2c (�)m (�) (9.42)

as expected from the parallel axis theorem. All of these inertial properties (the mass,
center of mass location, and mass moment of inertia with respect to the center of mass)
for the segment are required for the analysis to follow. It should be noted that, while
these integrals can be evaluated by hand for simple cases, they are also readily evaluated
by numerical means for more complex mass distributions, such as tapering links.
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9.6.2 Acceleration Components

The acceleration of the center of mass of the segment under consideration is also required.
This follows rather simply from a kinematic analysis of the situation, showing the roles
of the accelerations of the left end coupled with the e¤ects of the angular motion. Thus
the position of the segment center of mass is given by

xc = x (t) + �c cos� (9.43)

yc = y (t) + �c sin� (9.44)

These equations are then di¤erentiated twice with respect to time to obtain the center
of mass acceleration components:

_xc = _x (t)� _� (t) �c sin� (t) (9.45)

_yc = y (t) + _� (t) �c cos� (t) (9.46)

�xc = �x (t)� �� (t) �c sin� (t)� _�
2
(t) �c cos� (t) (9.47)

�yc = �y (t) + �� (t) �c cos� (t)� _�
2
(t) �c sin� (t) (9.48)

It is convenient to resolve the force sums along axes parallel and perpendicular to the
axis of the link. For this purpose, the components of acceleration are

ak = �xc cos�+ �yc sin�

= �x cos�+ �y sin�� _�
2
�c (9.49)

a? = ��xc sin�+ �yc cos�
= ��x sin�+ �y cos�+ ���c (9.50)

9.6.3 Force & Moment Equations

The stage is now set for the application of Newton�s Second Law. Thus,X
Fk = Fx cos�+ Fy sin�+ T (�) = m (�) ak (9.51)X
F? = �Fx sin�+ Fy cos�+ V (�) = m (�) a? (9.52)

+CCWX
Mc = M (�) + [� � �c (�)]V (�) + Fx�c (�) sin�� Fy�c (�) cos�

= Jc�� (9.53)
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These equations are solved for the required force components:

T (�) = m (�) ak � Fx cos�� Fy sin�

= m (�)
h
�x (t) cos�+ �y (t) sin�� _�

2
�c

i
�Fx cos�� Fy sin� (9.54)

V (�) = m (�) a? + Fx sin�� Fy cos�

= m (�)
h
��x (t) sin�+ �y (t) cos�+ ���c

i
+Fx sin�� Fy cos� (9.55)

M (�) = Jc��� [� � �c (�)]V (�)� Fx�c (�) sin�+ Fy�c (�) cos�

= Jc��� [� � �c (�)]m (�)
h
��x (t) sin�+ �y (t) cos�+ ���c

i
�� (Fx sin�� Fy cos�) (9.56)

This is the intended result, expressions for T (�), V (�), and M (�). The tension, shear,
and bending moment for a cut at any position can now be calculated at any time during
the motion.

With the shear, tension, and bending moment known at any point, the standard methods
of elementary stress analysis may be employed to compute shear, axial, and bending
stresses in the link. It should be noted that a gravitational load on the link is not
included in the analysis above; it can certainly be added to this work, although it is often
not considered signi�cant. These results show, for example, that a uniform bar swinging
as a pendulum experiences at every section not only a tension but also shear and bending
moment.

9.7 Conclusion

The determination of interconnection forces and moments (and those internal to indi-
vidual components for limited situations) is demonstrated in this chapter. These values
are often essential to a proper design analysis, to assure adequate component strength,
bearing size, and a host of other design questions. It is also often necessary to evaluate
the forces after the fact for purposes of accident investigation and failure analysis.
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While the development of system equations of motion is often best done by means of
energy methods (Eksergian�s equation or the Lagrange equations), the evaluation of forces
and moments is only possible through the use of Newton�s Second Law. The application
of Newton�s Second Law also produces, in addition to the forces, a value for the system
acceleration, although usually only at the cost of considerably more computational e¤ort.
The energy-derived acceleration and that obtained from the Second Law must be in
agreement; failure to agree indicates a computational error.

If static analysis is dismissed for dynamical systems, there remain at most two major
approaches to the force analysis. For situations where a the system motion is periodic,
exhibiting a steady state oscillation, it may well be possible to obtain a satisfactory force
analysis by means of the kinetostatic method. Where it applies, this method should not
be dismissed because of its relative ease of application. For those cases where there is
no steady state, or where the velocities are thought to vary widely through a cycle, then
the dynamic simulation is the only basis available for the force analysis.
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Problems

9-1 The �gure shows a bit over half of a plan view of an aircraft. The aircraft is in level
�ight with its velocity along the y�axis; the z�axis is vertically upward. The aircraft
velocity at this moment is vy but it is accelerating in the forward direction in the amount
ay. The lift and drag forces on the elemental wing section (shown shaded) are of the forms
dFLift = CLv

2
y dx (in the positive z�direction) and dFDrag = CDv

2
y dx (in the negative

y�direction). The aerodynamic forces combine to produce four items of concern for this
problem. Draw the appropriate free body diagram for the wing, and then, based on
aero-loads only, compute:

(a) Sy = horizontal shear force at the wing root;

(b) Sz = vertical shear force at the wing root;

(c) My = bending moment at the wing root about the y�axis;

(d) Mz = bending moment at the wing root about the z�axis.

9-2 For the trammel mechanism shown, the center of mass of the connecting link is at
the midpoint. All geometric data are known, as are the spring rate and the dashpot
coe¢ cient. The spring is relaxed when x = xo; a known value.

(a) Develop all of the kinematic analysis required for later steps;

(b) Determine the guide reactions and the pin connection forces in terms of the geometry
and F (t);
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(c) Determine the values for all of the forces of (b) at an instant when x = 155 mm,
_x = 85 mm/s, bases on the parameters below:

L = 688 mm xo = 77 mm

ML = 1:15 kg JLc = 0:0152 kg-m
2

Mx = 0:225 kg My = 0:272 kg

K = 785 N/m B = 147 N-s/m

9-3 For the roller-pendulum shown, evaluate the force components on the stationary
pivot pin, the roller axle, and the shear and normal forces between the roller and the
level surface when � = 0:0287 rad and _� = 26:38 rad/s. This system data is in the
following table.

ML = 12:86 kg JLC = 3:485 kg-m
2

MR = 17:89 kg JRC = 0:333 kg-m
2

C = 1:255 m H = 0:974 m R = 0:139 m

9-4 For the quick return mechanism shown, the �ywheel is driven by a motor torque T
while the slider motion is opposed by the force F .

(a) Perform all kinematic analysis required for later use;

(b) Determine the system equation of motion;

(c) Determine the slider-guide reaction force;
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(d) Determine the lever pivot reactions at point O;

(e) Determine the forces on the �ywheel pin in the lever slot;

(f) Determine the forces on the slider pin in the lever slot;

(g) Determine the �ywheel bearing reactions;

(h) Using the data below, evaluate all of the forces enumerated above for the situations
where � = 0:544 rad, _� = 22:33 rad/s, T = 27:7 N-m, F = 587 N and the following
system parameters:

MS = 10:7 kg Jc = 0:28 kg-m
2 Jo = 5:30 kg-m

2

R = 115 mm C = 490 mm D = 710 mm

BS = 185 N-s/m BP = 126 N-s/m

9-5 The cam shown is an eccentric circle with radius R and eccentricity ". The cam shaft
rotates at a constant rate, _� = const: The spring tension is Fko when the follower angle
� is at its minimum value. All the indicated mass moments of inertia are referenced to
the body axis of rotation. The shaft joining the cam follower to the load is considered as
massless.

(a) Perform all kinematic analysis required for later parts;

(b) Determine the equation of motion in terms of the cam rotation angle, /�;
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(c) Determine the required driving torque, To, for _� = constant;

(d) Determine the contact force between the cam and the follower;

(e) Determine the net cam shaft bearing reactions;

(f) Determine the net bearing reactions on the follower shaft;

(g) Determine the torque in the follower shaft at section G;

(h) For the case where � = 1:378 rad and _� = 53:0 rad/s, evaluate numerically all
of the forces and torques enumerated above. Use the following system data for these
calculations:

" = 6:33 mm R = 18:0 mm Fko = 125 N

D = 135 mm d = 92 mm K = 400 N/m

Jo = 1:5 � 10�5 kg-m2 J1 = 6:3 � 10�5 kg-m2 J2 = 3:3 � 10�5 kg-m2

9-6 The planet carrier motion is the input angle, �, driven by the torque To. The sun
gear is stationary, and the planet gear rotation is A: The crank arm is aligned with the
reference make on the planet gear. The drive mechanism may be considered as massless,
but the load has mass moment of inertia Jc about its rotation axis, C � C. The sun
gear pitch radius is RS; the planet pitch radius RP , and the crank o¤set is b. The input
angular velocity, _�, is held constant.

(a) Perform all kinematic analysis required for later use;
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(b) Express the required torque, To, as a function of � and _�;

(c) Determine the tangential force between the sun gear and planet;

(d) Determine the contact force between the crank and the slot wall;

(e) Evaluate all the previously enumerated forces and torques for the situation � = 1:122
rad, _� = 15:55 rad/s. Use the following data for the system parameters:

RS = 380 mm RP = 123 mm

b = 35:0 mm Jc = 0:320 kg-m
2

9-7 The �gure shows a coil spring used to launch a small block, M . The free length of
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the spring is So, and prior to launch, it is compressed to the length Smin. The spring has
mass MS, assumed to be uniformly distributed over its length. The objective here is to
determine the launch velocity for the block, while taking into account the mass of the
spring.

9-8 In the quick return shown, the torque To acting on the crank causes reciprocating
motion in the slider, resisted only by the inertia of the system. The crank has mass M1

and mass moment of inertia J1o with respect to the �xed pivot. The coupling link #4
has its center of mass at the center of the link.

(a) Perform all kinematic analysis required for later use;

(b) Determine the equation of motion;

(c) Determine the forces on the stationary pivot pin in the lever slot:

(d) Determine the bearing reactions on the crank;

(e) Determine the slider guide force;

(f) Determine the forces at all connecting pins;

(g) Evaluate all the forces enumerated above for the case where � = 0:858 rad, _� = 14:52
rad/s, using the data below:

D1 = 92 mm D2 = 195mm D3 = 198 mm D4 = 75 mm

M1 = 0:055 kg M2 = 0:119 kg M3 = 1:420 kg M4 = 0:080 kg

J1o = 3:4 � 10�5 kg-m2 J2c = 3:8 � 10�4 kg-m2 J4c = 3:8 � 10�5 kg-m2

To = 0:72 N-m u = 85 mm R = 37 mm
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9-9 The device shown is a chain cutter, found in a hardware store. Consider the case
when a horizontal force is applied to the lever, F = 450 N: Using the data below,

(a) Determine the force available to cut the chain link;

(b) Determine the load on the roller in the lever slot;

(c) Determine the bearing loads at both �xed pivots.

C = 136 mm L = 1067 mm

R = 162 mm r = 33mm

9-10 The �gure shows a spring-loaded garage door (previously considered in problems
2-15 and 2-16). The door weighs 940 N, and the center of mass is at the middle of the
panel. Both opening and closing motions are very slow, so that dynamics really do not
need to be considered. Determine appropriate values for the spring constant, K, and the
pre-load in the spring, such that a man lifting on the lower edge never needs to exert
more than 30 N upward to raise the door.
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C1 = 2134 mm C2 = 2079 mm C3 = 274 mm

C4 = 274 mm C5 = 213 mm C6 = 90 mm

xA = 1402 mm yA = 183 mm lower pivot location

xD = 1402 mm yD = 975 mm upper pivot location

xF = 2286 mm yF = 1066 mm spring anchor location

9-11 Consider yet again the air powered press previously encountered in problems 2-20,
2-21, and 6-14. All data provided in those problems, and all analysis done for them, is
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understood to apply here as well.

(a ) Determine the force acting in each of the simple links L1; L2; L3 and L4 throughout
the piston stroke. Take tension forces as positive and compressive forces as negative.

(b) Identify the extreme values in each link along with the piston position for which those
extreme values occur.
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Chapter 10

SDOF Vibrations

10.1 Introduction

In all of the earlier portion of this book, all bodies are considered to be rigid. The
only exceptions have been springs, usually identi�ed with the traditional coil spring or
a spiral torsional spring, and assumed to have a linear force-de�ection relation. While
rigid bodies are an extremely useful idealization for many purposes, they do not perfectly
re�ect reality. In the physical world, all bodies deform to some degree under load. For
systems where the deformation is linearly related to the applied load, the proportionality
constant is called the sti¤ness. The reciprocal of the sti¤ness is called the compliance or
�exibility.

When part deformation is taken into account, the simple rigid body geometric relations
used in kinematic analysis are no longer applicable; the distances between points in a
single body are no long constant but now change with load on the part. One immediate
consequence of this is that the number of degrees of freedom increases drastically. In
the most extreme case, every single physical body is considered to have in�nitely many
degrees of freedom. This is clearly an unmanageable model. Because engineering analysis
is about making mathematical models that provide useful descriptions of reality, retaining
the essentials without being over burdened by excessive detail, the inclusion of �exibility
in the model is something of an art (rather than a science) and must be practiced with
skill to obtain good results.

In application, the existence of �exibility in machine parts leads in many cases to small
amplitude, high frequency motions. Theses are sometimes called chatter, oscillation,
bouncing, noise, or more generally, simply vibration. Most machine parts, made from
steel or other strong engineering materials, are quite sti¤, which means that they do
not deform very much under design load levels. This has two consequences: (1) the
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motion amplitudes of concern are usually small (larger amplitudes would be associated
with extremely large forces), and (2) the motion is usually quite rapid (high frequency)
compared to the gross body motion that may also be occurring.

From a mathematical perspective, much of the study of mechanical vibration comes down
to dealing with a single family of ordinary di¤erential equations. This family of equations
is so widely encountered that the student will do well to simply memorize the solutions
and apply them directly, rather than repeatedly working through the solutions time and
again.

There are two major cases of common interest. The �rst is what is called free vibration.
Free vibration means that the system is set in motion by the initial conditions, either
an initial deformation, an initial velocity, or perhaps both of these conditions combined.
If an elastic body is suddenly released from a strained position, the resulting vibratory
motion is free vibration. Similarly, if an elastic system is subjected to an initial velocity,
such as with a hammer blow, the resulting motion is free vibration. The second major
case is called forced vibration. A forced vibration is the response of the system to a
continuing excitation, a source of continued energy input to the system. The general case
is, of course, a combination of these two cases, where an elastic system with some initial
energy (initial strain and/or kinetic energy) is subject to continuous external excitation
from an outside energy source.

10.2 Free Vibration of SDOF Systems

Just as seen in the earlier study of kinematics, the simplest case is that of the single
degree of freedom (SDOF) vibrational system. Experience shows that this actually is
a useful model for a large number of real systems, as well as providing background for
vibrations of multidegree of freedom systems.

10.2.1 Undamped Vibration

For this section, only very simple mechanical systems are considered, although they are
in fact representative of a vast number of actual physical systems. The focus is instead on
the form of the di¤erential equations of motion and their solutions. To this end, consider
�rst the simple spring-mass system shown in Figure 10.1. This is the prototypical SDOF
vibratory system.

The �gure shows a simple mass, a block of mass M , connected on the left side to a �xed
support through a spring of sti¤ness K. The position of the mass is indicated by the
coordinate x (t), and the spring is relaxed (stress free) when x = 0: The small circular
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Figure 10.1: Free Vibration of an Undamped Spring-Mass Oscillator

rollers under the mass are intended to indicate that there is no friction in the system.
The only force acting on the mass is that of the stretched spring. The equation of motion
is immediately obtained through Newton�s Second Law as

M �x+Kx = 0 (10.1)

There is nothing at all incorrect about equation (10.1) as written, but it is not quite in
the preferred form. Standard form for an equation of this sort requires two things:

1. That the coe¢ cient of the highest derivative is normalized to 1:0;

2. The ratio K=M is replaced with the symbol !2o:

Thus, in standard form, the equation of motion is written as

�x+ !2ox = 0 (10.2)

where !o is called the (undamped) natural frequency. This is a key parameter of the
solution and tells much about the nature of the solution in itself.

Assume the solution and the �rst derivative in the form

x (t) = � cos!ot+ � sin!ot (10.3)

_x (t) = �!o� sin!ot+ !o� cos!ot (10.4)

The coe¢ cients � and � are to be appropriately chosen to satisfy the initial conditions.

Suppose the given initial conditions are these: x (0) = xo and _x (0) = vo. The solution
and the derivative, equations (10.3) and (10.4), are evaluated at t = 0 to provide a pair
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of equations solvable for � and �. When these solutions are substituted into equation
(10.3), the result is

x (t) = xo cos!ot+
vo
!o
sin!ot (10.5)

The reader should verify that this expression does indeed satisfy equation (10.2) and the
initial conditions.

There is more signi�cance to equation (10.5) than may at �rst be apparent. It says that
the response of any undamped spring-mass system to an initial disturbance (non-zero
initial position, velocity, or both) but absent further excitation is (a) harmonic motion,
(b) at the frequency !o: Consider now two substitutions:

xo = X sin� (10.6)

vo = !oX cos� (10.7)

which, when solved for X and �, give

X =

s
x2o +

�
vo
!o

�2
(10.8)

� = arctan

�
!oxo
vo

�
(10.9)

When these substitutions are made in equation (10.5), the result is

x (t) = X sin (!ot� �) (10.10)

This last form expresses the solution in terms of a single sinusoid of amplitude X with
a phase angle �. This form, equation (10.10) and the previous solution, equation (10.5)
are completely equivalent.

10.2.2 Damped Free Vibration

Damping is the general term used to describe the several processes by which mechanical
energy in the system is converted into heat and thus lost from the motion. Damping
may be due to dry friction (Coulomb friction), viscous friction, �uid dynamic drag, and
internal hysteresis in the spring. The only damping description that is relatively easy
to deal with mathematically is what is called viscous friction, that is, a friction force
proportional to the �rst power of the relative velocity between two points (this sort of
friction has been previously encountered in dashpots). The system of Figure 10.1 is
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Figure 10.2: Free Vibration of a Spring-Mass Oscillator with Viscous Damping

redrawn in Figure 10.2 with the inclusion of a viscous damper with coe¢ cient C: (Note
that both B and C are common symbols for the damper coe¢ cient, and both are used
in this work.) The system is otherwise the same as that previously considered.

When the equation of motion for the system of Figure 10.2 is assembled, the result is

M �x+ C _x+Kx = 0 (10.11)

or, in standard form, it reads

�x+ 2�!o _x+ !2ox = 0 (10.12)

where

!o =
p
K=M = undamped natural frequency, as previously

� = C= (2M!o) = damping factor (or damping ratio).

Compare standard form for the damped system with that for the undamped system, and
note the di¤erences.

While the undamped natural frequency has units of radians/second, the damping factor
is dimensionless. The nature of the solution depends strongly on the value of the damping
factor.

Assume a solution in the form
x (t) = ae�t (10.13)

which is easily di¤erentiated and substituted into equation (10.12) to produce�
�2 + 2�!o�+ !2o

�
ae�t = 0 (10.14)
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This equation is satis�ed if either (a) a = 0; in which case the result is only the trivial
solution, or (b) the coe¢ cient in parentheses is zero. Equating the coe¢ cient to zero gives
what is called the characteristic equation. Solving the characteristic equation produces
here two roots,

�1;2 = ��!o � !o

q
�2 � 1 (10.15)

It is apparent that the size of � is extremely important as this will control the sign of the
quantity under the radical. There are four cases to be considered.

Figure 10.3: Damped Spring-Mass Oscillator Response Curves

Figure 10.3 shows three possible system responses (discussed below) plotted as functions
of time and depending upon the damping level. In addition to the three actual motion
plots, the graph shows a pair of envelope curves. The same physical system is considered
in all three cases (!o = 3:0 rad/s), except for the amount of damping that varies from
case to case. Note that all three response motions begin from the same point (marked
IC for Initial Condition) with the same initial slope (xo = 0:2; vo = 1:5).

10.2.2.1 Case 1: Over Damped Solution, � > 1

If � > 1; the system is said to be over damped (the meaning of the term becomes more
clear when considered in context with the remaining cases). For this case, the quantity
under the radical is greater than zero, so there are two real roots:

�1 = ��!o + !o

q
�2 � 1 (10.16)

�2 = ��!o � !o

q
�2 � 1 (10.17)
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and the solution is
x (t) = a1e

�1t + a2e
�2t (10.18)

The constants a1 and a2 must be evaluated to satisfy the initial conditions. This solution
does not oscillate, but simply dies away as shown in Figure 10.3 as the curve of shortest
broken lines. For the example plotted, � = 1:6; which in most circumstances is rather
heavy damping. Note that this curve shows the smallest maximum rise, a limitation
imposed by the substantial damping value, and the curve rather quickly begins to return
to the zero displacement condition. Note also, however, that it does not get to zero most
quickly.

10.2.2.2 Case 2: Critically Damped Solution, � = 1

In the event that � = 1, the system is said to be critically damped. When this happens,
both roots of the characteristic equation are real and equal; this is said to be a repeated
real root.

�1 = �2 = �!o (10.19)

For this situation, the originally assumed solution form, equation (10.13) is inadequate,
and a di¤erent form must be used:

x (t) = (a1 + a2t) e
�!ot (10.20)

As before, the constants a1 and a2 must be evaluated to satisfy the initial conditions. In
point of fact, this solution dies away in the most rapid manner possible without oscillation,
making this the boundary case between oscillatory and non-oscillatory solutions. This
solution is also shown in Figure 10.3 as the longer broken line curve, again originating at
the IC mark. It rises to a higher level than the � = 1:6 curve due to the lesser amount
of damping, but it also returns to the zero displacement level most quickly of all possible
solutions.

10.2.2.3 Case 3: Under Damped Solution � < 1

By far the most common case in mechanical vibrations is that for which � < 1. For this
case, the roots of the characteristic equation are complex values,

�1 = ��!o + j!o

q
1� �2 (10.21)

�2 = ��!o � j!o

q
1� �2 (10.22)
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where j =
p
�1. Note that the terms under the radical are re-ordered so that the

radical represents a real number. Because the quantity !o
p
1� �2 occurs repeatedly, it

is convenient to de�ne the damped natural frequency, !d, thus:

!d = !o

q
1� �2 (10.23)

With this new notation, the solution may be written as

x (t) = e��!ot
�
a1e

j!dt + a2e
�j!dt

�
(10.24)

or, to avoid the complex exponential functions, it is written in the equivalent form

x (t) = e��!ot (� cos!dt+ � sin!dt) (10.25)

where all factors of the last form are real numbers. This is a very important solution form
that should be simply committed to memory. As before, the constants (now � and �)
are evaluated from the initial conditions. It is apparent that this is a sinusoid scaled by
a decaying exponential function. It may be visualized as a sinusoidal oscillation bounded
above and below by decaying exponential envelope curves. In Figure 10.3, the actual
motion is shown as a solid curve, and the upper and lower envelope curves are shown
in very short broken line. Note that, due to the small damping (� = 0:1 used for the
example), the solution rises to the greatest excursion and it also oscillates repeatedly as
it gradually decays to zero.

10.2.2.4 Case 4: Undamped Solution, � = 0

In the event that � = 0, there is no damping at all. This is the case that was considered
in the previous section. It may be considered as the limit of the under damped case for
which � ! 0: In that limit, two important things happen:

1. The damped natural frequency approaches the undamped natural frequency, that
is, !d ! !o;

2. The exponential factor approaches unity, so that the envelope does not decay, that
is, e��!ot ! 1:0.

This case is not shown in Figure 10.3, but it is just a pure sinusoid passing through the
prescribed initial conditions.
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10.2.3 Log Decrement

In practice, it is often quite di¢ cult to accurately assess the damping ratio of a physical
system. Certainly any deliberate damping, such as a dashpot, makes a contribution, but
there are always other small, not easily described, contributions as well. For an under
damped physical system that actually exists (as opposed to one that exists on paper
only), there is one physical measurement approach that enjoys considerable success. It
is called the log decrement method.

Consider the physical system to be similar to that shown in Figure 10.2, adequately
instrumented to record x (t) accurately. Let the mass be set in motion by any combination
of initial displacement and/or initial velocity. The log decrement, �, is de�ned by the
simple relation

� =
1

n
ln

�
xi
xi+n

�
(10.26)

where xi denotes the ith displacement peak value, and n is an integer. The necessary
peak values are read from the displacement recording, where xi and xi+n are two well
de�ned peak values. From equation (10.26), it is evident that the log decrement can be
written as

� =
1

n
ln

e��!ot1

e��!o(t1+n�)
=
1

n
ln e�!on�d = �!o� d (10.27)

where � d is the period of damped vibration,

� d =
2�

!d
=

2�

!o
p
1� �2

(10.28)

Combining these two expressions shows that

� =
2��p
1� �2

� 2�� (10.29)

where the last equivalence is true only for small values of �. Finally, for small damp-
ing factors, the value of the damping factor � is related to the directly measurable log
decrement thus:

� � 1

2�
� =

1

2�n
ln

�
xi
xi+n

�
(10.30)

For existing under damped systems, the log decrement provides a readily applicable
experimental approach to determining the actual damping factor. This has the advan-
tage of incorporating all damping mechanisms actually present, whether by design or by
accident.
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10.2.4 Free Vibration Summary

For free vibrations, the mass (M), sti¤ness (K) and damping (C) values combine into two
primary parameters: the undamped natural frequency, !o =

p
K=M , and the damping

factor, � = C= (2M!o). These two parameters entirely determine the nature of the solu-
tion (over damped, critically damped, under damped, or undamped). Both parameters
are easily evaluated without the need to consider initial conditions at all. The initial
conditions are necessary only if the full solution is required.

10.3 Transient and Steady State Solutions

In dealing with ordinary di¤erential equations, the terms homogeneous and particular
solutions are most frequently used by mathematicians, while engineers tend to speak in
terms of transient and steady state solutions. What is the relation between these terms?

The di¤erential equations describing free vibration, such as equations (10.2) or (10.12),
always have a zero on the right side. In mathematical terminology, such an equation is
said to be a homogeneous equation, and the solution is called a homogeneous solution.
For systems with viscous damping, the homogeneous solution always includes a factor
e��!ot that progressively reduces the homogeneous solution toward zero.

A dictionary de�nition for the word transient suggest that it describes something that
exists only over a limited time; anything that is transient is not permanent or enduring.
Thinking about the di¤erential equation solutions demonstrated above, it is evident that
this is an appropriate description for terms that decay toward zero amplitude as time
becomes large. These are the terms that involve a factor e��!ot, and they arise in the ho-
mogeneous solution. This leads to the common engineering practice of referring
to the homogeneous solution as the transient solution in all cases, irrespective
of the presence or lack of damping.

When the right side of the di¤erential equation of motion is nonzero, the complete solution
must always include a particular solution, that is, terms included speci�cally to satisfy
the right side. Particular solution terms usually do not tend to zero unless the right
side terms also tend to zero, so particular solutions typically continue on without a time
limit. This is exactly what is described by the term steady state, a term that suggests
something that continues following a regular pattern inde�nitely, enduring without a time
limit. Thus engineering practice tends to use the term steady state for the
particular solution. For real systems, where damping is always present, it is reasonable
and correct to speak of the steady state as the vibration that continues to exist long after
damping has eliminated the e¤ects of the initial conditions.
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Figure 10.4: Undamped Spring-Mass Oscillator with External Forcing

One of the di¢ culties with this terminology is in regard to undamped motion. Even in
this case, it is common practice to associate the homogeneous solution with the term
transient solution. In complicated problems, damping is often neglected in order to
simplify other aspects of the problem. When this is done, it is common engineering
practice to drop the homogeneous solution, usually with a few words about "damping
would eventually removed it from the solution" to justify discarding it. This is frequently
done even when damping is omitted from the mathematical model. When the transient
(homogeneous solution) terms are discarded, what is left for the solution are the steady
state (particular solution) terms.

10.4 Forced Vibrations of SDOF Systems

While free vibration is very common, it is certainly not the only type and often not the
most troublesome. Vibration that continues on and on inde�nitely, driven by an external
energy source, is often the cause of serious wear, fatigue damage, noise, and annoyance
to personnel near the equipment. There are three cases of common interest: (1) external
forcing, (2) support motion, and (3) rotating unbalance. Each of these are addressed
below.

10.4.1 Externally Forced Vibration

This is the situation where an outside agent applies a speci�ed force to the system
of interest. A typical system diagram is shown in Figure 10.4. The energy source is
considered to be external to the system of interest.
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10.4.1.1 Undamped Forced Vibration

For the forced vibration, consider the case where there are two nonzero terms on the right
side of the equation of motion, speci�cally the form

�x+ !2ox =
1

M
(C +D sin
t) (10.31)

Recall that the complete solution requires both the homogeneous solution and a particular
solution for each term on the right side. Thus two particular solutions are required for
this case. Consider two proposed particular solutions, xp1 and xp2,

xp1 = c

xp2 = d sin
t

where c and d are to be determined. Note what is being proposed: the particular solution
for a constant term is a constant, and the particular solution for a sinusoid is a sinusoid.
But what are the values of the coe¢ cients c and d?

Substitute the �rst particular solution to obtain

!2oc = C=M (10.32)

which is satis�ed provided that c = C= (!2oM). Similarly, substitute the second particular
solution to obtain

d
�
!2o � 
2

�
= D (10.33)

which is satis�ed by d = D= (!2o � 
2) ; provided that !2o � 
2 6= 0. For the moment,
assume the last condition is satis�ed. With the two constants c and d now known, the
complete solution and the �rst derivative are of the forms

xc (t) = xh (t) + xp1 (t) + xp2 (t)

= � cos!ot+ � sin!ot+
C

!2oM
+

D

!2o � 
2
sin
t (10.34)

_xc (t) = ��!o sin!ot+ �!o cos!ot+
D


!2o � 
2
cos
t (10.35)

It is these last two equations, equations (10.34) and (10.35) involving the coe¢ cients �
and � that must satisfy the initial conditions, x (0) = xo, _x (0) = vo.

When the complete solution and its derivative are evaluated for t = 0 and the results set
equal to the initial conditions, the resulting equations can be solved for the constants �
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and �. When those constants are substituted back into equation (10.34) and after some
re-arrangement, the �nal solution is

x (t) =

�
xo �

C

!2oM

�
cos!ot+

�
vo
!o
� 


!o

D

(!2o � 
2)

�
sin!ot

+
C

!2oM
+

D

!2o � 
2
sin
t (10.36)

What does this solution say?

1. If C = D = 0, that is, if there is no excitation (right side is zero), then the problem
is one of free vibration only, and the solution comes back to the same result as
equation (10.5); this is what should be expected.

2. If C 6= 0 but D = 0; then the solution oscillates forever at the natural frequency
!o; this is true, irrespective of the values of xo and vo:

3. If C = 0 but D 6= 0, then the solution oscillates forever at two frequencies, !o and

, again, irrespective of the values of xo and vo:

Is endless oscillation realistic? Is this consistent with experience? What has been ne-
glected in this initial formulation of the problem is energy loss through various forms of
friction. The simple solution obtained neglecting damping is useful for some purposes,
but the user must always be alert to false conclusions based on this very important
omission. This is considered in the next section.

10.4.1.2 Damped Forced Vibration

Figure 10.5: Damped Spring-Mass Oscillator with External Forcing

In general, the equation of motion takes the form

�x+ 2�!o _x+ !2ox =
1

M
F (t) (10.37)
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One case of particular importance occurs when the external force, F (t), is sinusoidal in
time. In the case of the undamped motion, the presence of a sine term on the right gave
rise to a sine term in the particular solution. The situation is slightly di¤erent in the
damped case. The presence of either a sine or cosine on the right requires both a sine and
a cosine term in the particular solution; this is a direct consequence of viscous damping
that causes a phase shift between the response and the excitation. Consider then the
particular case where F (t) is sinusoidal at frequency 
, so that equation (10.37) takes
the form

�x+ 2�!o _x+ !2ox =
Fo
M
sin
t (10.38)

for which the homogeneous solution is developed earlier. For the particular solution,
assume the form

xp = A cos
t+B sin
t (10.39)

where A and B are to be determined as required for the particular solution. When the
form for xp is di¤erentiated and substituted into equation (10.38), the result is a single
equation with A and B as unknowns. Separating the sine and cosine terms gives a pair
of equations to be solved for A and B. The result is

A =
�2�!o
Fo

M


4 � 2!2o
2
�
1� 2�2

�
+ !4o

(10.40)

B =
� (
2 � !2o)

Fo
M


4 � 2!2o
2
�
1� 2�2

�
+ !4o

(10.41)

With the particular solution in hand, the complete solution is obtained by adding the
homogeneous and particular solutions, thus

xc (t) = xh (t) + xp (t)

= e��!ot (� cos!dt+ � sin!dt)

+A cos
t+B sin
t (10.42)

where A and B are now known from above, equations (10.41) and (10.42). It is now nec-
essary to evaluate � and � such that the complete solution satis�es the initial conditions.
This is a process of several steps:

1. Di¤erentiate equation (10.42) to obtain _xc (t) ;

2. Evaluate xc (0) and set it equal to the initial value, xo;

3. Evaluate _xc (0) and set it equal to the initial velocity, vo;
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4. Solve the two resulting equations for � and � to obtain the complete solution,
xc (t) :

When all of these steps are carried out, the result is

� = xo +
2�!o


Fo
M


4 � 2!2o
2
�
1� 2�2

�
+ !4o

(10.43)

� =
�xop
1� �2

+
vo

!o
p
1� �2

+

�

2 � !2o

�
1� 2�2

��p
1� �2

�

4 � 2!2o
2

�
1� 2�2

�
+ !4o

� 

!o

Fo
M

(10.44)

10.4.1.3 Forced Vibration Solution Summary

It is important to recognize the multi-step nature of this solution process. It is easy for
the unwary to get confused as to where they are in the process, and the rather formidable
amount of algebra involved makes this confusion a great waste of time. Thus, to review
very brie�y, the process is this:

1. Start by obtaining the homogeneous solution. This solution must include two
arbitrary constants that cannot be evaluated at this point, but must wait until
later in the process.

2. Propose an appropriate form for the particular solution. This proposed form may
have several constants that must be adjusted in order to satisfy the requirements
for the particular solution. Initial or boundary conditions are not involved in this
step. Determine all constants required for the particular solution.

3. Add the homogeneous and particular solutions to obtain the complete solution.
Di¤erentiate the complete solution in order to obtain a velocity expression.

4. Evaluate the complete solution and the associated velocity expression at time t = 0
and set those results equal to the initial position and velocity, respectively. Solve
the resulting equations for the two arbitrary constants in the homogeneous solution.

5. Put all evaluated constants in their respective locations to obtain the �nal, complete
solution.
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10.4.1.4 Magni�cation Factor

Engineering interest is often focused particularly on steady state vibration. This is the
persistent motion where most fatigue cycles leading to component failure are accumu-
lated. The steady state solution of equation (10.38) involves the two constants, A and
B; given in equations (10.40) and (10.41) to express the solution in the form given in
equation (10.39). While that form is entirely correct, it is often convenient to express
the solution in terms of a single sine term with a phase angle, thus:

xss (t) =
Fo=Kq�

1� (
=!o)2
�2
+ (2�
=!o)

2
sin (
t� �) (10.45)

= Xss sin (
t� �) (10.46)

where the steady state amplitude, Xss; and phase angle, �, are

Xss =
Fo=Kq�

1� (
=!o)2
�2
+ (2�
=!o)

2
(10.47)

tan� =
2�
=!o

1� (
=!o)2
(10.48)

This is the result of combining the sine and cosine terms (and their coe¢ cients A and
B) in a manner similar to that done to obtain equation (10.10).

The amplitude of the exciting force is Fo. If a constant force of that same magnitude
were applied statically to the system, the static displacement would be Xst,

Xst = Fo=K (10.49)

Using this last expression to replace Fo=K in equation (10. 47) allows the ratio Xss=Xst

to be re-written as

Xss

Xst

=M (
=!o; �) =
1q�

1� (
=!o)2
�2
+ (2�
=!o)

2
(10.50)

whereM (
=!o; �) is de�ned as themagni�cation factor. These results, equations (10.48)
and (10.50) provide both the vibration amplitude ratio (M = Xss=Xst) and the phase
angle (�) expressed in terms of the dimensionless ratios (
=!o) and �.

Figure 10.6 shows both the magni�cation factorM(
=!o) and the phase angle (�) plotted
as functions of the frequency ratio 
=!o for various values of the damping factor values,
�. There are several interesting aspects of this plot that bear comment:
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1. For both the magni�cation factor and phase plots, the frequency ratio varies from

=!o = 0 up to 
=!o = 5; the trends beyond that range are evident. Plots are
provided for damping factor values � = 0:1; 0:2; 0:3; 0:4; 0:5; 1:0; and 2:0:

2. On the magni�cation factor plot, the smaller the value of the damping factor, the
more extreme the peak around 
=!o = 1:0 becomes. Although the curves exceed
the available space, it should be understood that all of these curves close at the
top. No curve is shown for � = 0, but it is not di¢ cult to understand that (a) it
must lie just slightly above the highest magni�cation factor curve shown, and (b) it
does not close at the top. The reader should look to the de�ning equation (10.50)
to understand why the curve does not close at 
=!o = 1:0 when � = 0.

3. All of the phase angle curves shown are smooth, and all pass through 90o at 
=!o =
1:0: For the case not shown, � = 0, the phase curve is zero for 
=!o < 1 and then
jumps discontinuously to 180o for 
=!o > 1:

4. For values of the damping factor 0 < � �
p
2 the magni�cation factor has an

interior maximum point. For extremely small values of �, that maximum occurs
very near 
=!o = 1:0. As the value of � is increased, the maximum amplitude
point moves down (due to increased damping action) and to the left until it reaches
the value 1:0 at 
=!o = 0: The locus of the maxima is shown in Figure 10.6 as just
described here.

5. For values of the damping factor � >
p
2, the maximum value of the magni�cation

factor is 1:0; an end point maximum occurring at 
=!o = 0:

10.4.2 Displacement Excitation

Displacement excitation refers to a situation where the structure supporting the system of
interest is displaced causing vibration of the system. This is often the case with seismic
activity, but also occurs near large machinery (like a punch press or a railroad) that
shakes the ground or building structure during the course of its operation. A system
schematic of this sort is shown in Figure 10.7. The support motion is denoted as s (t).
Note that, when s (t) = x (t) = 0, there is no force in the spring.

The equation of motion for the damped system with support motion is easily obtained
by applying Newton�s Second Law to give

M �x+ C _x+Kx = C _s+Ks (10.51)

This is cast in standard form by dividing byM and using the standard de�nitions for !o
and �

�x+ 2�!o _x+ !2ox = 2�!o _s+ !2os (10.52)
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Figure 10.6: Magni�cation Factor and Response Phase for Sinusoidal Excitation

Note that the right side contains both s (t) and the derivative, _s (t) ; this is the only part
of this problem that is unusual.

In particular, it is of interest to solve this system for the case where the displacement
excitation is sinusoidal, that is,

s (t) = S cos
t (10.53)

As before, the steady state response is assumed to be of the form

x (t) = A cos
t+B sin
t (10.54)

which is then di¤erentiated and substituted into the equation of motion. When the sine
and cosine terms are separated, the result is a pair of equations to be solved for A and
B:

�
!2o � 
2

�
A+ 2�!o
B = !2oS (10.55)

�2�!o
A+
�
!2o � 
2

�
B = �2�!o
S (10.56)
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Figure 10.7: Damped SDOF Oscillator Subject to Support Motion

with the solutions

A =
1� (
=!o)2 + (2�
=!o)2�
1� (
=!o)2

�2
+ (2�
=!o)

2
S (10.57)

B =
2� (
=!o)

3�
1� (
=!o)2

�2
+ (2�
=!o)

2
S (10.58)

This result can be written in the form of a response amplitude ratio and phase angle by
the usual process:

x (t) = X cos (
t� �) (10.59)

where

X

S
=

q
1 + (2�
=!o)

2q�
1� (
=!o)2

�2
+ (2�
=!o)

2
(10.60)

� = arctan

"
2� (
=!o)

3

1� (
=!o)2 + (2�
=!o)2

#
(10.61)

Figure 10.8 shows plots of the amplitude ratio and phase functions as de�ned by equations
(10.60) and (10.61). Each is plotted as a function of the frequency ratio, 
=!o, for a
range of damping factors, � = 0:1; 0:2; 0:3; 0:5; 1:0, and 1:5: There are several interesting
points to note about these curves:

1. As might be expected, the curves are such that the lowest value of the damping fac-
tor produces the highest response ratio, X=S, for low values of the frequency ratio,

=!o: However, exactly the reverse is true for higher frequency ratios where the
greatest response is the result of the highest damping ratio. At higher frequencies,
damping acts like additional sti¤ness in the system.
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Figure 10.8: Response Amplitude Ratio and Phase for Displacement Excitation

2. All of the response amplitude ratio curves pass through the common point
�p
2; 1
�
.

This means that the system response is independent of the damping factor for

 =

p
2!o.

3. Looking at the phase angle plot, it is evident that there is no point where the phase
angle is the same for all damping factors. This is unlike the previous case with
force excitation where a common phase of �=2 (90o) occurs for 
 = !o.

4. For very large values of the frequency ratio, for all damping levels, the phase angle
tends slowly toward �=2 (90o) due to the dominance of the (
=!o)

3 factor in the
numerator of the phase angle expression.

10.4.3 Rotating Unbalance

One case of particular importance is unbalance in a rotating part. It is commonly found in
electric motors, generators, steam and gas turbines, and various other rotating machinery.
Such a system is shown in Figure 10.9, along with free body diagrams for both the housing
and the rotor.

Further note that there are two masses involved: (a) Mh is the mass of the housing, and
(b) Mr is the mass of the rotor. The rotor is assumed to be slightly unbalanced, so that
the center of mass for the entire rotor is a distance " o¤ the axis of rotation. As drawn, "
appears quite large, but in actual practice it will be some tiny amount, typically less than
one millimeter. It is assumed here that the rotor remains centered in the housing at all
times, and rotates at a constant angular speed 
 rad/sec. The horizontal displacement
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Figure 10.9: Unbalanced Rotor on Damped Supports

of the rotor axis is x (t), where x = 0 is the stress free state of the spring. Vertical motion
is not considered here.

In the lower part of Figure 10.9, free body diagrams are shown for the housing (left) and
rotor (right). All forces are shown on each FBD, including gravitational forces, although
these last play no role because only horizontal motion is considered.

Notations:

x (t) = displacement of shaft center from relaxed spring position


t = angle turned by rotor

" = rotor eccentricity

Mr = mass of the rotor

Mh = housing mass

Fsx = shaft force in horizontal direction

Fsy = shaft force in vertical direction
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Fy = vertical guide reaction force

Fk = spring force

Fc = damper force

K = spring rate

C = damping rate

g = acceleration of gravity

Begin by forming the horizontal equations of motion for each of the two free bodies:

Housing

+!X
Fhoriz = Fsx � Fc � Fk = Fsx � C _x�Kx =Mh�x (10.62)

Rotor

+!X
Fhoriz = �Fsx =Mr

d2

d2t
[x+ " cos
t] (10.63)

Notice that the acceleration of the rotor center of mass involves two terms, one expressing
the motion of the shaft center and the second expressing the horizontal component of the
eccentricity. When these two equations are added together and the derivative expression
is expanded, the result is

(Mh +Mr) �x+ C _x+Kx =Mr

2" cos
t (10.64)

This is put in standard form by dividing by the coe¢ cient of �x, with the result

�x+ 2�!o _x+ !2ox =
Mr"


2

Mh +Mr

cos
t (10.65)

where

!2o =
K

Mh+Mr
= square of the undamped natural frequency

� = C
2!o(Mh+Mr)

= damping factor
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Because the steady state solution is the primary concern, consider a particular solution
in the form

x = A cos
t+B sin
t (10.66)

When this is di¤erentiated, substituted, and the sines and cosines separated, two equa-
tions for A and B result:24 1� � 


!o

�2
2�
�


!o

�
�2�

�


!o

�
1�

�


!o

�2
358<: A

B

9=; =

�



!o

�2
Mr"

Mh +Mr

8<: 10
9=; (10.67)

This system of equations is easily solved to evaluate the amplitude of the rotor excursion
given by

p
A2 +B2.

p
A2 +B2 =

(
=!o)
2 Mr"
Mh+Mrq�

1� (
=!o)2
�2
+ [2� (
=!o)]

2
(10.68)

Now de�ne the dimensionless unbalance response ratioM (
=!o; �) as

M (
=!o; �) =
(Mh +Mr)

p
A2 +B2

Mr"

=
(
=!o)

2q�
1� (
=!o)2

�2
+ [2� (
=!o)]

2
(10.69)

A typical set of unbalance response ratio curves,M as a function of 
=!o, are shown in
Figure 10.10 for the sequence of damping ratio values, � = 0:1; 0:2; 0:3; 0:5; 0:7, 1:0, 1:5
from top to bottom.

From equation (10.69), it is evident that for 
 � !n, the response ratio M (
=!o; �)
goes to 0 for all values of the damping ratio. Again, from equation (10.69), as the shaft
speed becomes very large, in a similar fashionM (
=!o; �) goes to 1, again for all values
of �.

The unbalance response curve actually tells a bit of industrial history. Toward the left end
(
=!o � 1), the response to unbalance is very small. This means that if the operating
speed is far below the natural frequency, the response is essentially zero, as mentioned
above. At the beginning of the industrial revolution in Europe, machines using wind and
water power ran slowly, and unbalance was not much of a problem. Moving slightly to
the right on the plot, it is clear that as operating speed increases to approach the natural
frequency (
=!o ! 1), the response amplitude rises drastically, and ultimately is limited
only by the damping present in the system. This led many people in the 19th century
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Figure 10.10: Unbalance Response Ratio versus Frequency Ratio

to believe that there was a natural limit for machinery speed. Whenever attempts were
made to operate a machine faster than its natural frequency, the amplitude became large
and there would be a machine wreck. Understanding this was a matter of major concern
in the 19th and early 20th centuries. Today, many machines operate well above their
natural frequency (aircraft jet engines have many natural frequencies, and it is common
for them to pass through several as they run up to operating speed). This is out on the
far right end of the curve or beyond. In the very high speed range (
=!o � 1), it is
evident that the amount of damping makes little di¤erence; all of the curves approach
the same value. In the limit for extremely high operating speed, the analysis above shows
thatM! 1 and the displacement approaches "Mr= (Mh +Mr). This indicates that the
displacement can be reduced by reducing "; i.e. by better balancing, and by increasing
the housing mass in proportion to the rotor mass. This is common sense. If there is
better balancing, then the centrifugal forces are reduced, and they are the driving force
for this system. If the housing is made more massive compared to the rotor, this says
that the rotating element is simply anchored to a more massive block which intuition
indicates must have a smaller response.

10.4.4 Other Periodic Excitations

The reader may properly wonder why so much attention is paid to the response to
sinusoidal excitations when there are many non-sinusoidal excitations. The full answer
to such a question is beyond the scope of the present e¤ort, but a partial explanation is
o¤ered here.
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Under rather broad mathematical conditions, a periodic excitation function can be ex-
pressed in terms of a Fourier series of the form

y (t) = ao +
1X
n=1

[an cos (n
t) + bn sin (n
t)] (10.70)

where

y (t) is a periodic excitation of whatever sort, perhaps a force or maybe a support dis-
placement


 is the fundamental excitation frequency

ao is the mean value of the excitation

Consider then a single degree of freedom system subject to a general periodic excitation,
where the equation of motion is

M �x+ C _x+Kx = ao +
1X
n=1

[an cos (n
t) + bn sin (n
t)]

or, in standard form,

�x+ 2�!o _x+ !2ox =
ao
M
+
1

M

1X
n=1

[an cos (n
t) + bn sin (n
t)] (10.71)

Recall now what the solution process is:

1. Determine the homogeneous solution, if the transient response if of interest;

2. Determine a particular solution for each term, or pair of terms, on the right.

For engineering purposes, sums that run to in�nity are rarely useful, so it is appropriate
to assume in most cases that there is an upper limit, N , such that all terms past that
point may be neglected. It may be di¢ cult to determine an appropriate value for N; and
it may be rather large in some cases, but with computer implementation, �nite series of
hundreds of terms are quite feasible. Thus it is assumed that the series can be truncated
to a �nite number of terms so the problem is

�x+ 2�!o _x+ !2ox =
ao
M
ao +

1

M
[a1 cos (
t) + b1 sin (
t)

+ � � � an cos (n
t) + bn sin (n
t)

+ � � � aN cos (N
t) + bN sin (N
t)] (10.72)
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The solution for the constant term on the right presents no di¢ culty, and the solution for
each pair of terms on the right side has been discussed previously in isolation. All that
remains is to �nd all of the required particular solutions and add them together. This idea
is not developed further in the present text, but it is simple enough to employ whenever
required, only tedious and requiring careful attention to detail and bookkeeping.

10.4.5 Force Transmission

To this point, the discussion has focused on the motion resulting from various types of
excitation. For most vibration problems, this is the beginning, but it often not the end,
of the inquiry. If the primary concern is with the motion of the mass, then this much
analysis tells about all that is necessary; it provides the motion amplitude and phase, and
by di¤erentiation also the velocity and accelerations. From a design perspective there
are two other questions of major concern:

1. What is the force transferred through each of the supports to the structure? This is
a serious question for the design of the spring-damper system supporting the mass,
for the anchors that support the spring and the damper, and most important of
all, for component fatigue evaluation.

2. What can be done to reduce (or in a few cases, to maximize) the force transmitted
to the supports?

Considering �rst the second question, it is fairly easily addressed if it is understood
that the total transmitted force is the issue of concern. The total force transmitted to
the structure consists of all the terms in the equation of motion other than the mass
� acceleration term. Often system sti¤ness is assigned based on other considerations,
particularly the allowable de�ections for the system. In many cases, the damping can be
adjusted to minimize (or maximize) the total force transmitted to the structure.

For the �rst issue, the force through an elastic element, a spring, depends upon the relative
displacement of the ends, the elongation or deformation of the component. This is only a
part of the total force transmitted, but it should be easy enough to multiply the sti¤ness
into the relative displacement to obtain this force in most cases. The force through a
viscous connection, such as a dashpot, depends upon the relative velocity of the two
ends. Evaluation of this force requires that the displacement solution be di¤erentiated
and used to express the relative velocity. Then the force through the viscous element is
simply the product of the viscous coe¢ cient with the relative velocity.
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10.5 Laplace Transform Solutions

The Laplace transform technique is a popular means for dealing with the di¤erential
equations frequently found in vibration and control system problems. A full exposition
is beyond the scope of the present book, but a brief introduction is o¤ered here for those
who may not have encountered the topic previously. At its heart, the Laplace transform
approach converts a di¤erential equation in the time domain into an algebraic equation
in the complex plane. After the algebraic problem is solved, the results must then be
transformed back to the time domain to obtain the solution for the original problem.

Consider a time function, x (t), for which the Laplace transform is formally de�ned as
X (s),

X (s) = Lfx (t)g =
Z 1

0

e�st x (t) dt (10.73)

where

s = Laplace variable, a complex value

Lf�g denotes the Laplace transform operation

The notational convention used in this section of the book only is that lower case letters
typically denote time functions (with the exception of s), while the same letter in upper
case denotes the Laplace transform of the time function. Thus, in equation (10.73), x (t)
is the time function, while X (s) is the Laplace transform of x (t). Not all functions
have Laplace transforms, but fortunately transforms do exist for a wide variety of the
functions commonly found in engineering practice.

Laplace transformation is linear, which implies two things:

1. The transform of a function multiplied by a constant is simply that same constant
multiplied by the transform of the function: Lfc � x (t)g = c � L fx (t)g = c �X (s) ;

2. The transform of the sum of two functions is the sum of their respective transforms:
Lfx (t) + y (t)g = Lfx (t)g+ Lfy (t)g = X (s) + Y (s) :

These two properties follow directly from the properties of integration as used in the
de�nition of the transform.

The utility of Laplace transforms in dealing with di¤erential equations arises from the
way that time derivatives transform. In particular, note the two following transformation
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rules:

Lf _x (t)g = sX (s)� x (0) (10.74)

Lf�x (t)g = s2X (s)� sx (0)� _x (0) (10.75)

Notice that the transforms of the derivatives involve the initial values of the time function
and derivatives of lower order. This makes the Laplace technique attractive for initial
value problems (IVPs) where the initial conditions are speci�ed, but much less attractive
for two-point boundary values problems that involve speci�ed initial and �nal values
(BVPs).

When the solution is obtained in the Laplace domain, the task remains to transform it
back to the time domain. There exists formal methods for doing this operation, referred
to as inverse transformation, but these formal methods are not often really necessary.
The more common approach is to examine the Laplace domain solution and �nd the
individual pieces one by one in a table of Laplace transforms, of which there are many
available. An short table of Laplace transforms is provided here as Table 10.1, with more
extensive tables to be found elsewhere [1; 2]. While many problems can be solved with
even a short table, the availability of a larger table often facilitates problem solving.

Table 10.1 Laplace Transform Pairs

x (t) X (s)

1 c = constant c=s

2 eat 1/(s� a)

3 sin (kt) k= (s2 + k2)

4 cos (kt) s= (s2 + k2)

5 e�at sin (kt) k=
�
(s+ a)2 + k2

�
6 e�at cos (kt) (s+ a) =

�
(s+ a)2 + k2

�
7 1

a
sin (at)� 1

b
sin (bt) b2�a2

(s2+a2)(s2+b2)

8 1
a�b
�
eat � ebt

�
1/[(s� a) (s� b)]

9 1
a�b
�
aeat � bebt

�
s/[(s� a) (s� b)]

10 1
2a3
(sin at� at cos at) 1= (s2 + a2)

2

11 t
2a
sin at s= (s2 + a2)

2

12 1
2a
(sin at+ at cos at) s2= (s2 + a2)

2

13 t cos at (s2 � a2) = (s2 + a2)
2
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10.5.1 Example Problem: Free Vibration

Consider the damped spring-mass-damper system shown in Figure 10.2 in free vibration,
described by the equation of motion and initial conditions shown here:

�x+ 2�!o _x+ !2ox = 0 (10.76)

x (0) = xo (10.77)

_x (0) = vo (10.78)

Applying the Laplace transformation to both sides of the equation gives the algebraic
equation

0 = s2X (s)� s � xo � vo

+2�!o [sX (s)� xo]

+!2oX (s) (10.79)

or, after some manipulation,�
s2 + 2�!os+ !2o

�
X (s) = sxo + vo + 2�!oxo (10.80)

The quadratic coe¢ cient expression on the left is always factorable, provided complex
numbers are admitted. With this provision, the solution for X (s) is

X (s) =
sxo�

s+ �!o � j!o
p
1� �2

��
s+ �!o + j!o

p
1� �2

�
+

vo + 2�!oxo�
s+ �!o � j!o

p
1� �2

��
s+ �!o + j!o

p
1� �2

�
(10.81)

Despite the somewhat complicated appearance of equation (10.81), it is invertible by
application of transforms #8 and #9 in the Table 10.1. Applying these two transform
pairs allows the time function to written immediately in the form of complex exponential
functions. After some tedious algebra and employing the de�nition of sine and cosine in
terms of complex variables, the �nal result is simply

x (t) = e��!ot

"
xo cos

�q
1� �2!ot

�
+
(�!oxo + vo)p
1� �2!o

sin

�q
1� �2!ot

�#
(10.82)

Note that this is the complete solution for the free vibration of a single degree of free-
dom damped oscillator for any possible initial conditions. Compare this last result with
equation (10.25).
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10.5.2 Unit Step Function

There are interesting features associated with one function already introduced in the short
table of Laplace Transform Pairs, Table 10.1. The Laplace transform process assumes
that all functions are zero before t = 0; this is implied in the lower limit of the integral
that de�nes the transformation, equation (10.72). Thus the transform of the constant c,
given as item #1 in Table 10.1, is the transformation of a function that is zero for all
time before t = 0 and has the value c for all time after t = 0. It is useful to consider
speci�cally the value c = 1; and to call that the unit step function because it represents
a step change of unit value at t = 0. The notation u (t) is used here for the unit step at
time t.

Consider now a unit step that is delayed until t = a, where a > 0, denoted as u (t� a).
The value a is called the trigger point, the location where the step change occurs. Then
applying the de�nition of the Laplace transformation gives

U (s) = L fu (t� a)g =
Z 1

0

e�st u (t� a) dt

=

Z a

0

e�st � 0 dt+
Z 1

a

e�st � 1 dt

= �1
s
e�st

��1
a

= e�as=s (10.83)

When a function is multiplied by a delayed unit step, this is often described as activating
(or "turning on") the function at t = a. Thus a function can be initiated at t = a and
terminated at t = b by the use of a pair of unit step functions triggered at a and b.

10.5.3 Functions Shifted in Time

One of the useful properties of the Laplace transform is its ability to deal with functions
translated in time, the sort of shift shown in Figure 10.11 (c).

Consider a time function, g (t) for which the Laplace transform is known, G (s) =
Lfg (t)g. If it is necessary to shift the time function an amount a while activating
it at t� a, to become g (t� a) � u (t� a), the transform is de�ned by

Lfg (t� a) � u (t� a)g =
Z 1

0

e�st g (t� a) u (t� a) dt (10.84)
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Figure 10.11: Time Shifted Function: (a) Original Function, (b) Shifted Function. (c)
Shifted and Multiplied by Unit Step

At this point, make a change of variable such that � = t� a in the integral,

Lfg (t� a) � u (t� a)g =
Z 1

�a
e�s(�+a)g (�)u (�) d�

=

Z 1

0

e�s(�+a)g (�) d�

= e�asG (s) (10.85)

The lower limit is changed from �a to 0 because u (�) = 0 for � < 0. This development
makes evident that shifting and multiplying by the unit step has the e¤ect of multiplying
the transform by e�as. The usefulness of this capability is demonstrated in the following
example.
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10.5.4 Example Problem: SDOF Response to a Rec-
tangular Pulse

Consider the undamped spring-mass oscillator of Figure 10.4, initially at rest (x (0) = 0;
_x (0) = 0) acted upon by the rectangular force pulse F (t):

F (t) =

8>>><>>>:
0 t < 0

Fo 0 < t < a

0 a < t

(10.86)

The system equation of motion is

�x+ !2ox =
1

M
F (t) (10.87)

When the Laplace transformation is applied to each term, the result is

�
s2 + !2o

�
X (s) =

Fo
M

�
1

s
� e�as

s

�
(10.88)

Notice the way the translational capability is used to initiate the pulse at t = 0 and again
to terminate the pulse at t = a: Solving for the transform of the displacement gives

X (s) =
Fo
M

�
1

s (s2 + !2o)
� e�as

s (s2 + !2o)

�
(10.89)

Consider at �rst only the �rst term of the expression just above, here denoted as X1 (s),
which can itself be separated into two terms as

X1 (s) =
Fo
M

1

s (s2 + !2o)
=
Fo
M

�
1=!2o
s

� s=!2o
(s2 + !2o)

�
(10.90)

Each of the two terms in X1 (s) can be readily inverted to give

x1 (t) =
Fo
M!2o

(1� cos!ot) (10.91)

Thus the �rst term in X (s) leads to a displaced cosine term, (1� cos!ot). Notice also
that the second term in X (s) is of the same form, except that it is multiplied by a �e�as:
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The exponential factor shifts the solution to the right and triggers it at t = a, so the
complete solution is

x (t) =
Fo
M!2o

f(1� cos!ot)� u (t� a) [(1� cos!o (t� a))]g (10.92)

The result is that the response to the initial application of the force initiates a sinusoidal
response that is to some extent negated by the response to the force removal. The most
interesting case is a = 2�=!o for which the entire response consists of a single cycle of
sinusoidal motion with the mass returning to rest in the initial position.

10.5.5 Dirac Delta Function

Consider now the derivative of the unit step function. It is obviously zero for all time
before the trigger point, and also for all time after the trigger point. Even so, some-
thing happens at the trigger point such that integration across that location changes the
function value. This is expressed mathematically as

u
�
a+
�
� u

�
a�
�
=

Z a+

a�

d

dt
[u (t� a)] dt

=

Z a+

a�
� (t� a) dt = 1 (10.93)

The integrand here is what is called the Dirac Delta function, denoted as � (t� a). Ac-
cording the rigorous de�nitions of Riemann integration, the value of a function at a
single point cannot a¤ect the integration, but the delta function is actually a mathemat-
ical device called a distribution, and the integral is not strictly a Riemann integral. For
engineering purposes, it is su¢ cient to consider it an ordinary integral that obeys the
unique property indicated in equation (10.93).

Although the Dirac delta is called a function, no value can be assigned to it at the trigger
point. It may useful to consider another approach to understanding the Dirac delta,
as the limit of a more easily described proper function, For that purpose, consider a
rectangular pulse de�ned by the function f (t� a) de�ned as

f (t� a) =

8>>><>>>:
0 t < a

1=w a < t < a+ w

0 a+ w < t

(10.94)
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The function f (t� a) is a pulse of width w and height 1=w. If the area A under this
pulse is expressed formally by integration, the result is

A =

Z +1

�1
f (t� a) dt =

Z a+w

a

�
1

w

�
dt = 1 (10.95)

Now consider what happens to A in the limit as w ! 0. It is clear that the function
f (t� a) becomes unbounded, but it does so in such a way that the area under the curve
is always 1:0. Unit value for this integration is a fundamental property of the Dirac delta.

Looking at the de�nition of the Laplace transform, it follows that the transform of the
Dirac delta is

Lf� (t� a)g =
Z 1

0

e�st � (t� a) dt = e�as (10.96)

Further, for some other function, g (t), the Laplace transform of its product with a Dirac
delta is readily established,

Lf� (t� a) � g (t)g =
Z 1

0

e�st � (t� a) g (t) dt = g (a) e�as (10.97)

10.5.6 Impulse Response

Consider again the simple damped spring-mass system shown in Figure 10.5. The system
is initially at rest with no energy stored in the spring when a sudden, very brief force is
applied to the mass. Such a force might be the result of a hammer blow, or a vehicle
collision with the mass; the source of the force does not matter. All that is important is
the impulse of the force, that is, the time integral of the force taken over the duration of
the impact event; the impulse is as I.

I =

Z 0+

0�
F (t) dt (10.98)

In writing this expression for the impulse, it is understood that the impact occurs at
t = 0, so the limits are from the instant before impact to the instant after impact. In
view of what has been said about the Dirac delta, it is clear that the impulsive force can
be written as

F (t) = I � � (t) (10.99)

Observe that this last expression is zero for all time before and after t = 0; but when
integrated across t = 0, the result is the required value for the impulse of the force. It is
important to note that nothing has been said about the actual shape of the force pulse.
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It could be rectangular, it could be triangular, it could be half of a sine pulse, it could be
any shape at all. The only thing that is signi�cant is the value of the impulse, the area
under the force-time curve. The units of impulse are [Force] � [time] which in SI is N-s or
in USC units it is lb-s.

With the impulsive force substituted for F (t) in the equation of motion, equation (10.36)
becomes

�x+ 2�!o _x+ !2ox =
1

M
I � � (t) (10.100)

Taking Laplace transforms of all terms with all zero initial conditions gives

X (s) =
I=M

s2 + 2�!os+ !2o
=

I=M

(s+ �!o)
2 +

�
1� �2

�
!2o

(10.101)

Performing the inverse Laplace transformation using # 5 in Table 10.1 gives

x (t) =
I

M!o
p
1� �2

e��!ot sin

�q
1� �2!ot

�
(10.102)

The reader should check the units of this result to verify that the �nal result has proper
displacement units. Thus the response to an impulse I at time t = 0 is a damped sinusoid
at the damped natural frequency.

The Dirac delta is the ideal description for an impact event in a mechanical system.
Instrumented hammers are commercially available that can measure the actual force-
time characteristic by electronic means and compute the impulse. When the response is
similarly measured, either by a displacement transducer or an accelerometer, the impulse
response can calculated directly frommeasured data. This provides a powerful connection
between experimental measurements and theoretical calculations. There are methods
available (see Chapter 11) to relate all of this to systems far more complicated than the
simple system of Figure 10.5.

10.6 Linearization About an Equilibrium Point

Many mechanical system are described by nonlinear di¤erential equations, as seen in
Chapters 7 and 8. When such a system executes small oscillations near an equilibrium
point, it is usually possible to linearize the equation of motion, that is, to substitute a
linear approximation to the exact equation of motion. Here this process is considered for
a single degree of freedom system only, although similar, but more complicated processes,
apply with multiple degrees of freedom.
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10.6.1 General SDOF Equation of Motion

Recall from Chapter 7 that the equation of motion for a single degree of freedom system
can be written, using Eksergian�s formulation, as

I (q) �q + C (q) _q2 +
dV

dq
= Qnc (t; q; _q) (10.103)

where q is the generalized coordinate describing the system, and Qnc (t; q; _q) is the gener-
alized nonconservative force acting on the system (see Chapters 6 and 7 for the develop-
ment). The coe¢ cients are the generalized inertia, I (q) and the centripetal coe¢ cient,
C (q) ; given by

I (q) =
X
i

�
mi

�
K2
icx +K2

icy

�
+ JicK

2
i�

�
(10.104)

C (q) =
X
i

[mi (KicxLicx +KicyLicy) + JicKi�Li�] (10.105)

and the potential energy term is

V (q) = V [S1 (q) ; S2 (q) ; : : :] (10.106)
dV

dq
=
X
j

@V

@Sj

dSj
dq

=
X
j

@V

@Sj
KSj (q) (10.107)

where the Sj (q) are the various secondary variables as required and the KSj are the
associated velocity coe¢ cients.

10.6.2 Equilibrium

For steady load conditions, there often are one or more static equilibrium positions. Let
such a position be denoted as qe. The condition for static equilibrium is then

dV

dq

����
q=qe

= Qnc = constant (10.108)

where Qnc is the generalized nonconservative force.
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10.6.2.1 Linearization

Consider now the small motion of the system near the equilibrium position qe. The small
deviation from equilibrium is denoted as z (t), and a change of variables is made such
that

q �! qe + z (10.109)

_q �! _z (10.110)

�q �! �z (10.111)

Taylor series expansions are made for each of the nonlinear terms in the equation of
motion, retaining only terms of orders zero and one in the small quantity z:

I (qe + z) = I (qe) +
dI (q)
dq

����
q=qe

z + � � � (10.112)

C (qe + z) = C (qe) + � � � (10.113)

No further terms in are needed in the expansion of I (q) and C (q) because any additional
coe¢ cients are second and higher order terms in both cases. Continuing the Taylor
expansion for the potential energy gives

dV

dq

����
qe+z

=
dV

dq

����
qe

+z � [
X
j

@2V

@2Sj
K2
Sj| {z }

Term #1

+
X
j

@V

@Sj
LSj| {z }

Term #2

+
X
j;r

@2V

@Sr@Sj
KSrKSj| {z }

Term #3

]qe + � � � (10.114)

Qnc (t; qe + z; _z) = Qnc
e +

@Qnc

@q

����
qe

z +
@Qnc

@ _q

����
qe

_z + � � � (10.115)

Regarding the expression for the potential energy derivative, note that Term#1 and Term
#2 are present in all cases. The presence or absence of Term#3 depends somewhat on the
choice of secondary variables. To clarify, consider a spring for which the left end is located
by the secondary variable S1 (q) while the right end is located by the secondary variable
S2 (q). An additional secondary variable might be de�ned, S3 (q) = S2 (q)�S1 (q). If the
potential energy is formulated directly in terms of S1 and S2 (without reference to S3),
Term #3 is present; if the potential energy is formulated in terms of S3, then Term #3
is absent. The results are fully equivalent [3].
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10.6.3 Linearized Equation of Motion

When all the Taylor series are substituted into the equation of motion and (1) higher
order terms are dropped and (2) the equilibrium expression is removed, the linearized
result is

�z I (qe) + z [
X
j

@2V

@2Sj
K2
Sj| {z }

Term #1

+
X
j

@V

@Sj
LSj| {z }

Term #2

+
X
j;r

@2V

@Sr@Sj
KSrKSj| {z }

Term #3

]qe

=
@Qnc

@q

����
qe

z +
@Qnc

@ _q

����
qe

_z (10.116)

This is the intended result. Notice that the "sti¤ness" of the system involves several
combinations of derivatives of the potential energy, along with velocity coe¢ cients and
velocity coe¢ cient derivatives and a contribution from the nonconservative generalized
force. It is not recommended that this analysis ever be used simply as a formula; rather,
for each case, the full analysis should be conducted to be sure that everything appropriate
to the speci�c case is properly taken into account.

10.6.4 Spring-Loaded Trammel Example

At this point, consider again the spring-loaded trammel, nominally at rest equilibrium
but actually executing small oscillations about the equilibrium position. From Chapter
7, the exact equation of motion without the exciting force is

0 = �� I+ _�2C+
dV

d�

= ��

�
1

4
m1 + I1c +m2L

2 sin2 � +m3L
2 cos2 �

�
+_�

2 �
(m2 �m3)L

2 sin � cos �
�

+

�
1

2
m1 +m3

�
gL cos � �KSL sin � (L cos � � xo) (10.117)

The numerical solution presented in Chapter 7 shows that this represents an oscillatory
motion, but the evident nonlinearity puts it beyond the scope of linear vibration theory.
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As mentioned above, the intent here is linearize the equation of motion for small motions
about the equilibrium condition. This requires making a linear approximation to each
term in the equation of motion by means of Taylor series expansions.

From Chapter 7, the generalized inertia and the centripetal coe¢ cient are

I (�) =
1

4
m1 + I1c +m2L

2 sin2 � +m3L
2 cos2 � (7.58)

C (�) =
1

2

dI
d�
= (m2 �m3)L

2 sin � cos � (7.59)

dV

d�
=

�
1

2
m1 +m3

�
gL cos � �KSL sin � (L cos � � xo) (7.61)

Making the Taylor series expansions gives

I (�) � I (�e) + 2C (�e) z + � � � (10.118)

C (�) � C (�e) +
dC (�)
d�

����
�e

z + � � � (10.119)

dV

d�
� dV

d�

����
�e

+
d2V

d2�

����
�e

z + � � �

�
�
1

2
m1 +m3

�
gL cos �e �KSL sin �e (L cos �e � xo)

�z
��
1

2
m1 +m3

�
gL sin �e +KSL cos �e (L cos �e � xo)�KSL

2 sin2 �e

�
+ � � �

� z

�
�
�
1

2
m1 +m3

�
gL sin �e �KSL cos �e (L cos �e � xo) +KSL

2 sin2 �e

�
(10.120)

Now, substitute these results into the equation of motion, dropping all terms of order
two and higher in z and its derivatives, to obtain the linearized approximation:

0 = �z I (�e) + z[�
�
1

2
m1 +m3

�
gL sin �e

�KSL cos �e (L cos �e � xo) +KSL
2 sin2 �e] (10.121)

From the �nal form for the linearized equation of motion, it is evident that the e¤ective
values of inertia and sti¤ness are

IEff = I (�e) (10.122)

KEff = �
�
1

2
m1 +m3

�
gL sin �e �KSL cos �e (L cos �e � xo) +KSL

2 sin2 �e

(10.123)
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When the numerical values from Chapter 7 are substituted into these expressions, the
results are

IEff = 80:319043 lb-s2-in (10.124)

KEff = 44542:726 in-lb/rad (10.125)

from which, for a linear system the natural frequency and period are

!o =
p
44542:726=80:319043 = 23:549 rad/s

fo =
!o
2�
= 3:7479 Hz

Period = 1=fo = 0:26682 sec (10.126)

Now, compare this result with that from the numerical simulation developed in Chapter
7. There the simulation was based on a vertical blow with a magnitude of 450 pounds,
resulting in a rather large motion. The period of that motion after the end of the initial
impact is P450 = 0:28219818 s. If however, the same simulation is repeated except that
the magnitude of the blow is reduced to 2 pounds, so as to excite only a very small motion,
the period is P2 = 0:27092 sec. The fact that the period is amplitude dependent is a result
of the system nonlinearity. The result from the linearization was PLinearized = 0:26682
sec which compares rather closely with the period from complete simulation with the 2
pound excitation, roughly a four millisecond di¤erence in the period.

The advantage of the linearization is evident; the period (or frequency) for small ampli-
tudes is obtained without the labor of the full nonlinear simulation. The limitation is
also evident; the e¤ects of nonlinearity are not seen at all, and the results are valid only
for very small motions.

10.7 Dynamic Stability

In the previous discussion of stability, near the end of Chapter 6, the systems involved
were considered to be at rest equilibrium. Stability was presented there in terms of
returning to the original equilibrium state, but it is necessary to broaden the concept of
stability to include dynamic systems. This is an immense subject, and a full treatment is
beyond the scope of the present work. Thus the concept is extended here only by means
of an example. This example is also important because of what it says about the role of
friction.

Consider a simple pendulum (a point mass on a massless shaft), supported on a spinning
support, as shown in Figure 10.12. The support rotates clockwise at angular speed 
;
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Figure 10.12: Simple Pendulum on Rotating Support

and friction at the support causes the pendulum to assume an equilibrium position as
shown. The equilibrium angle is �e, expressed as

�e = arcsin

�
Tfo
MgL

�
(10.127)

where Tfe = equilibrium value of friction torque at the sliding contact.

It is reasonable to assume that the friction torque depends upon the relative velocity at
the point of contact, f

�

� _�

�
, where the functional form for f is yet to be speci�ed.

Whatever the speci�c form may be, it is here expanded in a Taylor series and truncated,

Tf = f
�

� _�

�
= f (
)� _�f 0 (
) + 1

2
_�
2
f 00 (
) + � � �

� Tfe � _�f 0 (
) (10.128)

After noting that MgL sin �e = Tfe, the equation of motion for the pendulum is

ML2�� + _� � f 0 (
) +MgL cos �e � � = 0 (10.129)

There are three cases to be considered:
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1. If f 0 (
) > 0, which is to say that the friction torque increases with relative velocity,
then the motion is a damped sinusoid. The response of the system to a disturbance
is to oscillate, but it will eventually return to the original equilibrium position. The
system is stable. This is the case most people expect, but it is not universally true.

2. If f 0 (
) = 0, which means that the friction torque is independent of the relative
velocity, then the motion is an undamped sinusoidal oscillation. The oscillation
does not grow with time, but neither does it damp out. Thus the system oscillates
about the initial position, but does not return to rest there. This case is neutrally
stable.

3. If f 0 (
) < 0, so that the friction torque decreases with increasing relative velocity,
the system motion is a growing oscillation. The amplitude of the oscillation grows
without limit, so that the system departs more and more from the initial state.
This system is unstable.

All three cases exist in real systems of various sorts, so friction can be a major determining
factor in system stability. Note how the concept of stability is here extended to include
systems that remain in motion for an extended time when disturbed, but are still unstable
or stable depending on whether or not completely depart from their initial state.

10.8 Conclusion

The subject of SDOF vibrations is a vast landscape of fairly well explored physical
problems. The discussion above has only presented a few of the salient points that
have found wide application in engineering. If these topics are mastered, so that they are
readily available for application, they are a su¢ cient foundation for the many variations
that will be encountered in actual engineering work.

The reduction to standard form in terms of the undamped natural frequency (!o) and
the damping ratio (�) is a vitally important �rst step. The solutions for the relevant dif-
ferential equations are already known when the describing di¤erential equation is written
in standard form. Time spent re-solving these di¤erential equations for each particular
case is simply time wasted.

The response formulations in terms of the dimensionless parameters (
=!o) and � make
it possible to deal with a wide range of problems of the same general form. For any
physical problem, described using any consistent units system, these same expressions
apply. They are easily solved to give correct results for any particular units system.

The discussion of SDOF vibrations also serves as background for the next discussion to
follow dealing with multi-degree of freedom vibrations, although major di¤erences are
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soon apparent.
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Problems

10-1 The �gure shows a cylindrical body with cross section in the form of a greater
circular segment (a) (see Appendix 4.4 for the properties of this shape). The body rolls
without slipping on a �at horizontal surface as shown at (b).

The known data are

d = 377 mm diameter of the circle

w = 162 mm width of the chordal �at

L = 140 mm length of the cylinder

� = 7800:55 kg/m3 mass density of the cylinder material

(a) Determine the mass, center of mass location, and mass moment of inertia for the
cylindrical body;

(b) Formulate the nonlinear equation of motion for the rocking vibration that results
from an initial displacement and/or velocity;

(c) Linearize the equation of motion and determine the natural frequency for the rocking
motion.

10-2 A submersible vehicle for deep sea exploration is being lowered from a winch on
an exploration ship. Suddenly there is a breakdown in the winch mechanism, causing
the winch drum to stop abruptly; call the time when the winch stops t = 0. At t = 0;
the vehicle is located at y (0) = yo, and dropping at a rate _y (0) = _yo > 0. This causes
a bouncing motion of the submersible. The submersible has a total mass of 5700 kg,
and a volume of 10:2 m3. The elasticity of the cable is described by the compliance per
unit length, c = 0:238 � 10�10 N�1: The mass density of sea water is �H2O = 1026 kg/m3.
Damping due to �uid drag is to be neglected.
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(a) Determine the amplitude and frequency of the bouncing motion if the sudden stop
occurs for yo = 700 m, _yo = 1:7 m/s;

(b) Determine the amplitude and frequency of the bouncing motion if the sudden stop
occurs for yo = 1400 m, _yo = 1:7 m/s;

(c) Determine the amplitude and frequency of the bouncing motion if the sudden stop
occurs for yo = 2100 m, _yo = 1:7 m/s;

(d) Determine the amplitude and frequency of the bouncing motion if the sudden stop
occurs for yo = 2800 m, _yo = 1:7 m/s;

10-3 The �gure shows a mass M supported against gravity by a spring and a viscous
damper; three di¤erent positions are shown for the mass. In the position y = 0 , there is
no strain in the spring.

(a) Develop the system equation of motion in terms of y and cast it in standard form (in
terms of !o and �);

(b) Determine the equilibrium position, ye;

(c) Modify the equation of motion to eliminate y in favor of z;

(d) State in words the advantages of expressing the equation of motion in terms of z:

(e) Using the data below, evaluate numerically !o, �, !d, and ye.

M = 3:77 kg K = 21750 N/m B = 280 N-s/m
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10-4 The �gure shows a simple torsional oscillator. The entire assembly is constructed
of the same material for which physical properties follow below.

(a) Assuming at �rst that the shaft torsional sti¤ness Kt and the disk mass moment of
inertia Jc are both known, write the equation of motion for small oscillations;

(b) Use a mechanics of materials approach to determine

(1) the disk mass polar moment of inertia;

(2) the shaft sti¤ness;

(c) Evaluate numerically !o, �, and !d for this system.

D = 23 mm �g = 76000 N/m3 material speci�c weight

R = 97 mm E = 190 GPa Young�s modulus

H = 12 mm G = 73:1 GPa shear modulus

L = 322 mm � = 0:305 Poisson�s ratio

B = 160 N-s/m
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10-5 Consider a simple spring-mass oscillator such as that shown in Figure 10.1 or,
because it is a real system, it is actually more like that in Figure 10.2. It is known that
the e¤ective system mass is M = 3:27 kg. The system is displaced and given an initial
velocity, and the motion is recorded as shown in the �gure. By reading data from the
�gure, obtain estimates for:

(a) the damping factor, �;

(b) the damped natural frequency, !d;

(c) the undamped natural frequency, !o;

(d) the spring sti¤ness, K.

10-6 The �gure shows a wedge cam with a roller follower rigidly connected to a mass
M3. The horizontal spring may operate in either tension or compression while the vertical
spring is always in compression to maintain contact between the cam and the follower.
The system is preloaded such that, when the roller makes contact on the tip of the cam,
the vertical spring is at 85% of its free length, L2o. Before using the numerical data
provided, assume that all dimensions and physical parameters (K1; K2; B; M1; M2; M3,
J2c) are known, as is the free length for the horizontal spring, L1o.

(a) Develop any kinematic relations required later;

(b) Calculate J2c assuming the roller is a simple disk of radius R and thickness t = 8
mm;
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(c) Determine the free length of the vertical spring;

(d) Write the system equation of motion (be sure to include the follower rotation);

(e) In terms of the known system parameters, express !o, �, and !d;

(f) Using the data below, calculate numerical values for !o, �, and !d:

(g) What is the equilibrium value of x?

K1 = 18500 N/m L1o = 122 mm C = 165 mm

K2 = 4350 N/m H = 45 mm L = 92 mm

M1 = 1:3 kg Y = 210 mm R = 20 mm

M2 = 0:8 kg B = 25 N-s/m H = 8 mm

M3 = 2:4 kg � = 20o

10-7 The �gure shows a point mass (the block) on the end of a massless pivoted lever.
The rotation of the block is to be neglected, so the mass moment of inertia of the block
does not matter. Assume that the spring is relaxed when � = 0 and that j�j remains
small at all times.

(a) Develop the equation of motion for this system;

(b) Express the undamped natural frequency and the damping factor;

(c) Using the numerical data below, evaluate !o, �, and !d for this system.
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M = 7:26 kg a1 = 275 mm

K = 165 N/m a2 = 410mm

B = 57:3N-s/m a3 = 883 mm

10-8 In Section 10.4, when discussing the response to a sinusoidal excitation applied
to an undamped system, the solution was developed with the explicit constraint that
the forcing frequency must not coincide with the system natural frequency. When the
excitation frequency is the same as the system natural frequency, the system said to be
in resonance, a condition usually associated with eventual catastrophic failure. Consider
now an undamped spring-mass oscillator such as that shown in Figure 10.4, where F (t) =
Fo sin!ot: Assume that x (0) = _x (0) = 0.

(a) Use the Laplace transform technique to obtain the solution for this case;

(b) Describe in words the nature of the solution;

(c) Based on the data below, how long does it take for the envelope of the motion to
reach 350 mm?

(d) How many cycles of system oscillations are required for the envelop to reach 350 mm?

M = 7:35 kg K = 1520000 N/m Fo = 520 N

10-9 In Section 10.4 based on Figure 10.5, the response of a damped spring-mass oscillator
to sinusoidal excitation is formulated. In that development, there was no need to exclude
resonant forcing, and thus it is included in the solution given, equation (10.42).

(a) For resonant excitation, that is 
 = !o, what does equation (10.42) say about the
nature of the response?

(b) Using the data from problem 10-8, with the additional value C = 17200 N-s/m; what
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is the eventual steady state amplitude of the response?

(c) Develop a computer generated plot for the system response. Does this agree with
your answer to part (a)?

10-10 In Section 10.5.4, the response to a single rectangular pulse is developed my means
of Laplace transforms and unit step functions. The undamped period is � o = 2�=!o. Use
the system data from problems 10-8 and 10-9 (b) for the questions below. Development
of computer code is necessary for this problem.

(a) For the pulse magnitude constant at Fo = 520 N, develop computer plots of the
solution for a = 1

2
� o;

7
10
� o;

9
10
� o:

95
100
� o;

98
100
� o; and � o out to t = 5� o;

(b) For the constant impulse value 1000 N-s, develop computer plots of the solution for
a = 1

2
� o;

2
10
� o;

1
10
� o:

5
100
� o; and 2

100
� o out to t = 5� o:
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MDOF Vibrations

11.1 Introductory Comments

Most machines may readily be seen to consist of parts in two categories: (1) the moving
mechanism, and (2) the stationary supporting structure. The reader is referred back to
the �rst page of Chapter 1 for the distinction between a mechanism and a structure.
Understanding this distinction is important at this point because the present chapter
is mostly about structures. The vibration of mechanisms, particularly the slider-crank
mechanism, is the subject of Chapter 12.

The modeling and analysis of multidegree of freedom systems was discussed in Chapter
8. In that chapter, the major new tool introduced was the Lagrange formulation of the
equations of motion. For the purposes of this chapter, it is assumed that the reader is
familiar with that approach and also with the classical Newton�s Second Law approach to
formulating equations of motion. The choice as to which one to use depends to a degree
upon the nature of the problem, but the eventual results should be the same no matter
which approach is employed.

11.2 Introductory Example

To begin this chapter, the simple single degree of freedom spring-mass oscillator is ex-
tended to include a second spring and a second mass. This changes the required approach
in several ways. The new system is shown in Figure 11.1

In the upper part of the �gure, (a), the system is shown at equilibrium rest with no
strain in either spring. In the lower part, (b), the system is displaced x1 and x2 under the
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Figure 11.1: Two Degree of Freedom Vibratory System

action of the applied external forces F1 (t) and F2 (t). The problem to be addressed here
is the determination of the vibratory response of the system under the time dependent
forces. Note that there is no damping included; this matter is addressed later.

11.3 Equations of Motion

In order to write the equations of motion, Newton�s Second Law is applied to each block
separately:

M1�x1 = �K1x1 +K2 (x2 � x1) + F1 (t) (11.1)

M2�x2 = �K2 (x2 � x1) + F2 (t) (11.2)

The di¢ culty is immediately evident; the equations of motion are coupled. This means
that they must be solved together, rather than separately. Think about what that means
for a system with many degrees of freedom and an equal number of equations of motion!

It is convenient to re-cast these equations in matrix form. In that way, what is done to
solve this simple system will also serve as a model for more complicated systems involving
a greater number of degrees of freedom.2666M1 0

0 M2

7775
| {z }
Mass Matrix

8<: �x1

�x2

9=;+
24K1 +K2 �K2

�K2 K2

35
| {z }

Sti¤ness Matrix

8<: x1

x2

9=; =

8<: F1 (t)

F2 (t)

9=;| {z }
Excitation Vector

(11.3)

Note that the mass matrix is diagonal; this is emphasized in the form of the brackets
enclosing dMc that point to the ends of the main diagonal. The diagonal mass matrix is
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typical for system equations formulated based on lumped mass models. The user should
be aware, however, that this is not the case with most �nite element codes which usually
employ a device called a consistent mass matrix, a topic beyond the scope of the present
discussion. Note also that the sti¤ness matrix is symmetric; this is to be expected.

In many respects, the approach to MDOF vibration follows the same process as that
used for SDOF systems, speci�cally dealing �rst with the homogeneous solution, then
the particular solution, and �nally the application of initial conditions. These steps are
developed below.

11.4 Homogeneous Solution

For the homogeneous solution, the excitation vector is set to zero, thus:2666M1 0

0 M2

77758<: �x1

�x2

9=;+
24K1 +K2 �K2

�K2 K2

358<: x1

x2

9=; =

8<: 00
9=; (11.4)

A solution is assumed in sinusoidal form at frequency !n,

fxg = fAg sin (!nt) (11.5)

where fAg is a vector of constants to be determined. When this assumed form is di¤er-
entiated and substituted back into equation (11.4), the result is24K1 +K2 � !2nM1 �K2

�K2 K2 � !2nM2

358<: A1

A2

9=; =

8<: 00
9=; (11.6)

Equation (11.6) is called the algebraic eigenproblem1. It represents a system of simul-
taneous, homogeneous, linear algebraic equations. Because they are homogeneous, a
nontrivial solution exists if and only if the determinant of the coe¢ cients is zero. Thus,
because only a nontrivial solution is of interest, it is necessary to require that������K1 +K2 � !2nM1 �K2

�K2 K2 � !2nM2

������ = 0 (11.7)

1The algebraic eigenproblem is discussed here in Section 11.4 in a physical context. Most of the same
ideas are presented from a mathematical perspective in Appendix 1.7 and Appendix 1.8. The reader
should consider reading these two presentations together.
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which can be solved to determine the suitable values of !2n (eigenvalues). Equation (11.7)
is called the characteristic equation. For this example, the characteristic equation is a
(bi)quadratic form

M1M2!
4
n � [K2M1 + (K1 +K2)M2]!

2
n +K1K2 = 0 (11.8)

The term biquadratic means that it is an equation of degree four, but may be considered
as being simply quadratic in the variable !2n because the terms of degree one and three
in !n are absent. From the quadratic formula, the solution is

!2n =
1

2M1M2

(K1M2 +K2M1 +K2M2 (11.9)

�
q
K2
1M

2
2 +K2

2M
2
1 +K2

2M
2
2 + 2K1K2M2

2 + 2K
2
2M1M2 � 2K1K2M1M2)

Completing the calculation gives two nonzero values, denoted as !1 and !2 that are
the two system natural frequencies. These are assumed known from this point on. The
symbolic solution shown is not very meaningful, but the whole process is easily carried
out with numeric values.

It is important to note that while the characteristic equation is simply a biquadratic for
the 2DOF system, for systems with more degrees of freedom, the degree of the polynomial
grows rapidly. In general, for n degrees of freedom, the characteristic equation is of degree
2n. Such larger systems cannot be solved in closed form, but there has been a vast amount
of work done in developing numerical methods for solving this problem, usually found
under the label the algebraic eigenvalue problem. Eigen- is a German adjective pre�x
that translates roughly as the proper, appropriate, acceptable, or correct solution.

For the values of !n = !1 and !n = !2, the existence theorem assures the existence of
nontrivial solutions, but it does not say how to �nd them. In actual fact, the solutions
are not fully determined; the meaning of this statement becomes more clear below.

Let !n = !1 and assume A1 = 1:0. Then the �rst equation reads�
K1 +K2 � !21M1

�
(1:0)�K2A2 = 0 (11.10)

so that

A2 =
K1 +K2 � !21M1

K2

(11.11)

The solution vector (called an eigenvector) associated with !1 is fAg1 = col
�
1:0;

K1+K2�!21M1

K2

�
.

The solution vector associated with the second natural frequency is found by an similar
process.
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Does the reader notice a degree of arbitrariness about the eigenvector? The �rst element
is simply chosen to be +1:0. It could just as easily have been chosen as A1 = 3:0;
A1 = �1:0; or A1 = �37:2. It really does not matter; any nonzero value is satisfactory.
The result of another choices is to scale the second element accordingly. Thus, if we choose
A1 = �1:0 ; the resulting eigenvector is col

�
�1:0;�K1+K2�!21M1

K2

�
. This scalability is what

was meant when it was noted that the solutions are not fully determined. In general, any
constant (real or complex) multiplier applied to an eigenvector produces another version
of that same eigenvector. An eigenvalue and its associated eigenvector are known as an
eigensolution, !j and fAgj.

The eigenvector is often called a mode vector or more graphically, a mode shape. The
term "shape" may initially sound strange, but it is actually very descriptive. In the
example above, the �rst mode vector (�rst mode shape) says two things about the �rst
mode motion: (1) the two masses move in the same direction at all times, and (2) for
any displacement of M1, the displacement of M2 in this mode is (K1 +K2 � !21M1) =K2

times as great. Similar statements can be made regarding the second mode shape. This
description of the motion, in terms of directions and relative magnitudes, is the reason
for the term mode shape. The concept of a mode shape is extremely important and must
be considered very carefully. The mode shape concept is encountered repeatedly in what
follows.

At this point, the homogeneous problem is put on hold, even though it has not been fully
solved. The entire solution process is addressed below in terms of the forced response, for
which the free vibration is simply a special case. For now, consider a numeric example
of the process discussed above.

11.4.1 Numerical Example

For the sake of an example, consider the system of Figure 11.1 with the following data:

M1 = 1:5 kg K1 = 275 N/m

M2 = 2:1 kg K2 = 124 N/m

The homogeneous equation (11.6), above, takes the form

24 399� 1:5!2 �124

�124 124� 2:1!2

358<: A1

A2

9=; =

8<: 00
9=; (11.12)
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so that the characteristic determinant is������ 399� 1:5!
2 �124

�124 124� 2:1!2

������ = 0 (11.13)

When this is expanded, the characteristic equation is

3:15!4 � 1023:9!2 � 34100 = 0 (11.14)

The positive roots of the characteristic equation are

!1 = 6:13755 rad/s

!2 = 16:95223 rad/s (11.15)

Note that, because the equation was a quartic, there are two more roots, the negatives
of these two values. For this problem, the negative roots are meaningless.

When the �rst root is substituted back with A1 = 1:0, the result is A2 = 2:76206. When
the second root is substituted back, again with A1 = 1:0, the result is A2 = �0:258606.
Thus the complete set of eigensolutions are

!1 = 6:13755 rad/s !2 = 16:95223 rad/s

fAg1 =

8<: 1:0

2:76206

9=; fAg2 =

8<: 1:0

�0:258606

9=; (11.16)

These results are typical. For free vibration, in the low frequency mode, both masses
move in phase as indicated by the same sign on all elements of the �rst mode vector (�rst
eigenvector); in this example, when M1 moves one unit, M2 moves 2:79206 units in the
same direction. In the high frequency mode, the opposite is true as indicated by the sign
di¤erence in the eigenvector elements; again in this example, when M1 moves one unit,
M2 moves 0:258606 in the opposite direction.

11.4.2 Systems of Higher Order

For the simple system of the example above with two degrees of freedom, the character-
istic equation is of fourth degree, i.e., 2n, where n is the number of degrees of freedom.
This facilitates the solution considerably. When the system order is relatively small,
say no more than 20, there are a number of techniques commonly taught in numerical
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analysis courses for determining the eigensolution. These include such methods as the
Jacobi method and various iteration schemes that are usually not too di¢ cult for an
average engineer to program. When the system becomes large, perhaps n � 20, then
the problem falls into the domain of the numerical analyst and the computer scientist.
Virtually all �nite element programs incorporate highly sophisticated eigensolvers that
are carefully designed and coded for speed and control of rounding errors.

It should be mentioned that an equation of the form�
[K]� !2n dMc

�
fAg = f0g (11.17)

is called a generalized eigenvalue problem. The term generalized is used to distinguish it
from the classical eigenvalue problem of the form

([G]� � dIc) f�g = f0g (11.18)

There are methods for converting the generalized eigenvalue problem into the classical
form; one such method is the Choleski transformation. As long as the mass matrix is diag-
onal, this is a simple process. With that assumption, de�ne the Choleski transformation
matrix [TC ] such that

dTCc = dMc1=2 (11.19)

Note that

� dTCc is diagonal;

� dTCc =
�p

mii

�
, the diagonal elements are the square roots of the mass values;

� dTCcT = dTCc ; the transformation matrix is its own transpose;

� dTCc�1 =
�
1=
p
mii

�
, a diagonal matrix with 1=

p
mii on the main diagonal;

� dTCcT dTCc = dMc, the products of the square roots reproduce the original mass
values.

Now replace dMc in equation (11:17) with the product dTCcT dTCc, to obtain�
[K]� !2 dTCc dTCcT

�
fAg = f0g (11.20)

and then premultiply by the inverse of the transformation matrix,

dTCc�1 [K] fAg = !2 dTCc�1 dTCc dTCcT fAg
= !2 dTCcT fAg (11.21)
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De�ne a new eigenvector, f�g and a new coe¢ cient matrix [G] such that

f�g = dTCcT fAg (11.22)

[G] = dTCc�1 [K] [TC ]�T (11.23)

which results in the classical eigenvalue problem

dTCc�1 [K] [TC ]�T dTCcT fAg � !2 dTCcT fAg = f0g�
[G]� !2 [I]

�
f�g = f0g (11.24)

Note particularly that the eigenvector is transformed while the eigenvalue remains the
same before and after the transformation. If the computer subroutine Jacobi.Tru (given
in Appendix 1.9 as a part of ChoJac.Tru) is used to solve the classical eigenvalue problem
when the generalized problem is the actual objective, it is necessary to execute the inverse
transformation in order to obtain the eigenvectors for the generalized problem. A single
computer code implementing (a) the Choleski Transformation, (b) the Jacobi Eigensolu-
tion, and (c) the inverse transformation is provided as ChoJac.Tru (see Appendix 1.9).
All of this is demonstrated later in regard to shaft vibration.

11.5 Forced Response Calculation

Everything in this chapter to this point has considered only the free vibration problem,
that is, the homogeneous response, even though that solution was not completed above.
The discussion now continues in terms of the forced response, remembering that the free
vibration response is simply the special case where there is no external forcing of the
system.

11.5.1 Modal Transformation

The original problem had an external force acting on each mass, and the equations of
motion were2666M1 0

0 M2

77758<: �x1

�x2

9=;+
24K1 +K2 �K2

�K2 K2

358<: x1

x2

9=; =

8<: F1 (t)

F2 (t)

9=; (11.3)

The homogeneous solutions found in the previous section provide a device to simplify
the solution of the problem. It begins with the eigenvectors, assembled to form what is
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called the modal transformation matrix, [A] ; (or simply the modal matrix), thus

[A] = [fAg1j fAg2] =

248<: 1:0

A21

9=;
8<: 1:0

A22

9=;
35 =

24 1:0 1:0

A21 A22

35 (11.25)

De�ne the modal coordinate vector, f� (t)g, such that

fx (t)g = [A] f� (t)g (11.26)

Note that, while fx (t)g and f� (t)g are each time dependent, the modal matrix is com-
posed entirely of constants. This transformation of variables is the key that unlocks the
multidegree of freedom response.

With the transformation de�ned, it is di¤erentiated and substituted it back into the
equations of motion, in abbreviated form thus:

dMc f�xg+ [K] fxg = fF (t)g
dMc [A]

n
��
o
+ [K] [A] f�g = fF (t)g

[A]T dMc [A]
n
��
o
+ [A]T [K] [A] f�g = [A]T fF (t)g (11.27)

The premultiplication by [A]T has an astonishing e¤ect; the results is that [A]T dMc [A]
and [A]T [K] [A] each reduce to diagonal matrices:

dMc = [A]T [M ] [A] (11.28)

dKc = [A]T [K] [A] (11.29)

where the notation d::c denotes a diagonal matrix. The matrices dMc and dKc are called
modal mass and modal sti¤ness matrices, respectively. This process of reducing the
coe¢ cient matrices to diagonal form is called a similarity transformation. It is discussed
at length in texts on linear algebra where the mode vectors are shown to satisfy certain
orthogonality relations.

With this �nal step, the equations of motion are

dMc
n
��
o
+ dKc f�g = [A]T fF (t)g (11.30)

Because the coe¢ cient matrices are now diagonal, the equations are decoupled (separated)
and may be re-written as

M11
��1 +K11�1 = A11F1 (t) + A21F2 (t) (11.31)

M22
��2 +K22�2 = A12F1 (t) + A22F2 (t) (11.32)
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The modal transformation trades the original problem, involving coupled di¤erential
equations, for an equal number of decoupled, single degree of freedom problems. This is
a huge step forward because the solution of single degree of freedom problems is known
from previous work. Further, these equations can be written in the familiar standard
form

��1 +
K11
M11

�1 =
1

M11

[A11F1 (t) + A21F2 (t)] (11.33)

��2 +
K22
M22

�2 =
1

M22

[A12F1 (t) + A22F2 (t)] (11.34)

or, better yet,

��1 + !21�1 =
1

M11

[A11F1 (t) + A21F2 (t)] (11.35)

��2 + !22�2 =
1

M22

[A12F1 (t) + A22F2 (t)] (11.36)

Thus the equations are not only separated, they are also in standard form with the
coe¢ cients !21 and !

2
2 as previously determined. The somewhat amazing thing about

this transformation is that it works every time, no matter what the parameter values
are, no matter how many degrees of freedom are involved. This is very powerful!!

At this point, the process is to solve this last set of equations to produce �1 (t) and �2 (t).
These are called the modal responses. After the modal responses are known, it is a simple
matter to go back through the modal transformation to produce the physical responses.

11.5.2 Numerical Example

For this example, the previous numeric problem, based on Figure 11.1, is continued with
the excitation in the form

fF (t)g =

8<: 22 sin (8t)0:0

9=; (11.37)

This means that an external force of 22 Newtons, varying sinusoidally at 8 rad/s, is
applied to the mass M1 while there is no external force acting directly on M2.
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11.5.2.1 Transformation to Modal Coordinates

The �rst step is to form the modal matrix using the eigensolutions found previously:

[A] =

24 1:0 1:0

2:76206 �0:258606

35 (12.30)

The modal mass and modal sti¤ness matrices are then calculated:

Modal Mass Matrix

dMc = [A]T [M ] [A]

=

24 1:0 1:0

2:76206 �0:258606

35T 24 1:5 0

0 2:1

3524 1:0 1:0

2:76206 �0:258606

35
=

24 17:521 8:944 4 � 10�7

8:944 4 � 10�7 1:6404

35
�

24 17:521 0

0 1:6404

35 (11.38)

Modal Sti¤ness Matrix

dKc = [A]T [K] [A]

=

24 1:0 1:0

2:76206 �0:258606

35T 24 399 �124

�124 124

3524 1:0 1:0

2:76206 �0:258606

35
=

24 660:0 3:282 4 � 10�4

3:282 4 � 10�4 471:43

35
�

24 660:0 0

0 471:43

35 (11.39)

The observant reader will notice immediately that the o¤-diagonal terms in each product
are small, but not quite zero; why? This is a result of the unavoidable numerical rounding
that happens in the calculation. The calculation is theoretically exact, but always fails
to this minor extent in actual application. The solution is simply to round the results,
dropping the small o¤-diagonal terms and replacing them with zeros. As a check, verify
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that the ratios of the diagonal terms are indeed the squares of the natural frequencies as
expected:

K11
M11

=
660:0

17:521
= 37:669 � !21 = (6:13755)

2 = 37:670 (11.40)

K22
M22

=
471:43

1:6404
= 287:39 � !22 = (16:95223)

2 = 287:38 (11.41)

These values check, as expected, to within small rounding errors.

The equations of forced motion, expressed in modal coordinates, are

��1 + (6:13755)
2 �1 =

1

17:521
[(1:0) 22 sin (8t) + (2:76206) (0)]

��1 + 37:670�1 = 1:2556 sin (8t) (11.42)

��2 + (16:95223)
2 �2 =

1

1:6404
[(1:0) 22 sin (8t) + (�0:258606) (0)]

��2 + 287:38�2 = 13:411 sin (8t) (11.43)

11.5.2.2 Solution in Modal Coordinates

As always, the complete solution consists of both homogeneous and particular solutions,
so the homogeneous solution forms are

�1h (t) = a1 cos (6:13755 � t) + b1 sin (6:13755 � t) (11.44)

�2h (t) = a2 cos (16:95223 � t) + b2 sin (16:95223 � t) (11.45)

The particular solution is

�1p (t) = X1 sin (8t) (11.46)

�2p (t) = X2 sin (8t) (11.47)

which must satisfy

X1

�
�82 + (6:13755)2

�
= 1:2556 (11.48)

X2

�
�82 + (16:95223)2

�
= 13:411 (11.49)

The �nal result for the particular solutions is

X1 = �4:7687 � 10�2 (11.50)

X2 = 6:0037 � 10�2 (11.51)
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and the modal particular solution is

�
�p (t)

	
=

8<: �4:76876:0037

9=; � 10�2 � sin (8t) (11.52)

11.5.2.3 Initial Conditions

At this point, a decision must be made. The choices are: (1) to transform the initial
conditions through the modal transformation, so that they can be applied directly to
the modal solution, or (2) to pass back through the modal transformation with several
undetermined coe¢ cients, so that the initial conditions can be applied directly to the
physical coordinates. Either process will work, and they are fully equivalent. For this
example, the �rst process is selected.

For the example problem, assume that the initial conditions are: x1 (0) = _x1 (0) = x2 (0)
= _x2 (0) = 0. The modal transformation matrix is nonsingular (this is usually true, but
not in all cases. It is true in this case.) Then the all zero physical initial conditions imply
all zero modal initial conditions also. If there were nonzero initial values, then the system
of simultaneous equations would be solved to give the nonzero modal initial conditions.

The forms for the complete solutions, in modal coordinates, are

�1 (t) = a1 cos (6:13755 � t) + b1 sin (6:13755 � t)
�4:7687 � 10�2 � sin (8t) (11.53)

�2 (t) = a2 cos (16:95223 � t) + b2 sin (16:95223 � t)
+6:0037 � 10�2 � sin (8t) (11.54)

Taking derivatives gives

_�1 (t) = �6:137 6a1 sin (6:3755t) + 6:13755b1 cos (6:13755t)
�0:38150 cos (8:0t) (11.55)

_�2 (t) = �16:952a2 sin (16:952t) + 16:952b2 cos (16:952t)
+0:48030 cos (8:0t) (11.56)

When all four of these expression are evaluated at t = 0, the solved results are

a1 = 0:0

b1 = 6:2158 � 10�2

a2 = 0:0

b2 = �2:833 3 � 10�2
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The complete solution, in modal coordinates, is

�1 (t) = 6:2158 � 10�2 sin (6:13755 � t)� 4:7687 � 10�2 � sin (8t) (11.57)

�2 (t) = �2:833 3 � 10�2 sin (16:95223 � t) + 6:0037 � 10�2 � sin (8t)
(11.58)

To recover the physical coordinates, the modal transformation is employed once again,

fx (t)g = [A] f� (t)g

=

24 1:0 1:0

2:76206 �0:258606

35
�

8<: 6:2158 � 10�2 sin (6:13755 � t)� 4:7687 � 10�2 � sin (8t)

�2:833 3 � 10�2 sin (16:95223 � t) + 6:0037 � 10�2 � sin (8t)

9=;

=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

6:215 8 � 10�2 sin (6:1376t)

�2:833 3 � 10�2 sin (16:952t)

+0:01235 sin (8:0t)

0:17168 sin (6:1376t)

+7:3271 � 10�3 sin (16:952t)

�0:14724 sin (8:0t)

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(11.59)

The �nal expression for the physical response shows that the motion of each mass includes
a terms (1) at the �rst natural frequency, (2) at the second natural frequency, and (3)
at the forcing frequency. Physical intuition says that, in a real system where damping
is unavoidable, the �rst two terms in each response must eventually die out, leaving
only the steady state (particular) solution. Since damping was omitted in the original
formulation, there is nothing in the mathematical solution to cause the natural frequency
terms to decay.

The initial reaction of the reader may well be, "That is an exhausting process to solve
a small, simple system. It must be terrible to solve a larger, more complicated system."
There are several responses to this reaction:

1. Many real problems do not require that the solution be carried all the way through
as was done in this example. In some cases, it is su¢ cient to determine only
the undamped natural frequencies to assure that they are well removed from any
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excitation frequencies. In that situation, it is often enough to state that there
will be no ampli�cation of the vibratory motion (no resonance), and therefore the
response is considered safe.

2. In many cases, there is no interest in the transient response but only in the steady
state response. For such a case, there is no need to consider initial conditions
(steady state is so far removed in time that initial conditions no longer matter),
and it is su¢ cient to determine only the forced response.

3. For systems with many degrees of freedom, computer methods employing matrix
methods (just as shown here) are really no more di¢ cult to code than for a simple
system. They do require more computer time to execute (usually very little more),
but they operate in exactly the same way.

4. It is simply foolhardy to attack a larger, more complex, physical system problem
without using a computer to handle the large number of arithmetic calculations
involved. The complexity of the example problems given above points to the sort
of di¢ culties that will be encountered.

11.6 Modal Analysis With Damping

Someone not familiar with this whole problem might reasonably assume that viscous
damping could be readily incorporated by simply modifying equation (11.3) to read

dMc f�xg+ [C] f _xg+ [K] fxg = fF (t)g (11.60)

where [C] would include coe¢ cients representing viscous coupling directly to ground
and also between the several masses. Indeed, there is nothing incorrect about such an
equation, but the problem is how to proceed past this point.

It has been demonstrated above how the modal transformation decouples the equations of
motion and thereby greatly facilitates their solution. This is the result of the similiarity
transformation that is able to simultaneously diagonalize two coe¢ cient matrix. The
di¢ culty lies in the fact that the similarity transformation is not able to diagonalize
three matrices, and hence cannot, in general, decouple equation (11.60). There are three
approaches to dealing with this di¢ culty, each of which has proved useful in engineering
practice.
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11.6.1 Proportional Damping

If the eigensolution is known for the undamped system, there is certainly the hope that a
modal transformation based on those eigenvectors will also decouple the damped problem.
In truth, this is possible for only a rather particular damping matrix [C]. If it is true
that the damping matrix is the sum of a matrix proportional to the sti¤ness matrix and
a second matrix proportional to the mass matrix, then the decoupling process works as
desired. Thus consider the equations of motion in the form

dMc f�xg+ (� [K] + � dMc) f _xg+ [K] fxg = fF (t)g (11.61)

where � and � are known constants. This approach is commonly called proportional
damping, referring to the fact that the damping matrix is a sum of matrices proportional
to [K] and dMc.

When the modal transformation is performed, the result is

dMc
n
��
o
+ (� dKc+ � dMc)

n
_�
o
+ dKc f�g = [A]T fF (t)g (11.62)

This is a system of completely decoupled, damped, second order di¤erential equations,
solvable by the methods of the previous chapter. Only in rare circumstances is there any
real basis for assuming the damping matrix to be in the required form. For this reason,
this method is used primarily when there is a demand for a rationalization for including
some degree of viscous damping.

11.6.2 Modal Damping

It has previously been demonstrated that the modal transformation is able to decouple
the undamped multidegree of freedom vibration problem. The decoupled problem is then
equation (11.30):

dMc
n
��
o
+ dKc f�g = [A]T fF (t)g (11.30)

There are situations where this form is simply modi�ed by adding a damping term,

dMc
n
��
o
+ dDc

n
_�
o
+ dKc f�g = [A]T fF (t)g (11.63)

where the dDc matrix is a diagonal matrix of damping values arbitrarily assigned by the
analyst. It should be emphasized that this is the art of engineering, something to be done
only by those highly skilled in the particular subject area where this is to be applied.
There is little science and a lot of experience involved in assigning the damping values,
so this is not a useful form for beginners to use.
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11.6.3 FDC Formulation

The term FDC Formulation is here used to describe a formulation of the viscously damped
multidegree of freedom problem that seems to have �rst appeared in the work of Frazer,
Duncan and Collar [1] ; where term FDC Formulation is a reference to their names. It
was largely unnoticed until it was revived in a technical report by Foss in 1956 [2] and
appears again in later works such as Tse, Morse, and Hinkle [3].

Frazer, Duncan and Collar begin with the typical form for a linear, viscously damped
system with n degrees of freedom,

dMc f�xg+ [C] f _xg+ [K] fxg = fFg (11.64)

which is then put into something like standard form by premultiplying by the inverse of
the mass matrix to give

f�xg+ dMc�1 [C] f _xg+ dMc�1 [K] fxg = dMc�1 fFg (11.65)

Consider �rst only the homogeneous problem, and introduce a new variable, fzg that is
(2n� 1) ; de�ned as

fzg =

8<: fxgf _xg
9=; (11.66)

The system di¤erential equations are then re-written if �rst order form in terms of fzg
and a partitioned coe¢ cient matrix:

d

dt
fzg =

24 [0] [I]

�dMc�1 [K] �dMc�1 [C]

35 fzg
where

[0] = (n� n) null partition;

[I] = (n� n) identity partition;

dMc = (n� n) diagonal mass matrix;

[C] = (n� n) damping matrix;

[K] = (n� n) sti¤ness matrix.
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The reader should multiply out this expression to verify that it is true and contains the
original equations of motion. This is all written in compact form as

f _zg = [U ] fzg (11.67)

where

[U ] =

24 [0] [I]

�dMc�1 [K] �dMc�1 [C]

35 (11.68)

At this point, assume a solution of the form

fzg = fAg e�t (11.69)

and substitute to obtain the classical eigenvalue problem.

([U ]� � [I]) fAg = f0g (11.70)

Note that, in most cases, � and the elements of fAg are complex numbers.

11.6.4 Numerical Examples

For a numeric example, the same two degree of freedom system considered previously is
considered, but now with damping included.

11.6.4.1 Proportional Damping

For the numeric inclusion of proportional damping, consider � = 0:02 and � = 0:01. The
system matrices are

dMc =

2666 1:5 0

0 2:1

7775
[C] =

24 7:9950 �2:4800

�2:4800 2:5010

35
[K] =

24 399 �124

�124 124

35 (11.71)
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These are the same dMc and [K] that were used previously; only [C] is new here. Since the
proportional damping approach is based on the eigensolution for the undamped problem,
the eigenvalues and eigenvectors remain as they were previously,

!1 = 6:13755 rad/s !2 = 16:95223 rad/s

fAg1 =

8<: 1:0

2:76206

9=; fAg2 =

8<: 1:0

�0:258606

9=; (11.16)

11.6.4.2 Modal Damping

As mentioned earlier, the application of modal damping is very closely tied to the nature
of the speci�c physical system being modeled. Since there is no actual system for this
example (it is only two generic masses connected with spring and damper elements),
then there is no basis for assuming any values at all. Consequently, there is no numeric
example for this approach.

11.6.4.3 FDC Formulation

As a numeric example of the FDC Formulation, consider the same system used for the
proportional damping system, so that the dMc ; [C] and [K] matrices are the same as
given just above in equation (11.71). When the matrix [U ] is formed, it is

[U ] =

26666664
0 0 1 0

0 0 0 1

�266:0 82:66667 �5:33000 1:65333

59:04762 �59:04762 1:18095 �1:19095

37777775 (11.72)

With the classical eigenproblem is solved for [U ], the results are:

�1;2 = �2:87878� j16:70601 (11.73)

�3;4 = �0:38170� j6:12567 (11.74)

fAg1;2 =

8>>>>>><>>>>>>:

�0:00968� j0:05618

0:00250� j0:01453

0:96647 + j0:0

�0:24993� j0:33412 � 10�15

9>>>>>>=>>>>>>;
(11.75)
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fAg3;4 =

8>>>>>><>>>>>>:

0:00340� j0:05464

0:00940� j0:15091

�0:33599 + 0:54416 � 10�15

�0:92803 + j0:0

9>>>>>>=>>>>>>;
(11.76)

where j =
p
�1 . The numeric results shown here were produced by Maple R. There are

several points in this example worthy of comment.

1. All the eigenvalues and the components of the eigenvectors are complex numbers.

2. The eigensolutions are randomly ordered, probably not the way the user would
prefer to have them, but they can be re-ordered.

3. Recalling that the ��values correspond to ��!o+j
p
1� �2!o for a damped single

degree of freedom, it is evident that the �rst eigensolution found corresponds to
the high frequency mode (here 16:70601 rad/s compared to 16:95223 rad/s for the
undamped case) while the second eigensolution corresponds with the low frequency
mode. The reduction in oscillatory frequency is what is usually expected with the
addition of damping, so this is consistent with experience.

4. Looking at the real parts of the two eigenvalues, it is evident that they represent
damping factors �1;2 = 2:87878=16:95233 = 0:16982 and �3;4 = 0:38170=6:13755
= 6: 2191 � 10�2, relatively light damping in both modes.

5. No particular nomalization is here applied to the eigenvectors. The complex entries
make it di¢ cult to visualize the mode shapes. This di¢ culty is even more signi�cant
for systems with many degrees of freedom.

As a �nal comment on the matter of including damping in multidegree of freedom vibra-
tions, it is safe to say that there is no easy way. The FDC Formulation is mathematically
correct, but the results are very di¢ cult to interpret because of the complex values. The
other two methods involve a lot of guess work and are therefore suspect to some degree.

11.7 Beam Vibrations & Whirling

Beam-like structures are very common in machinery, both in the frames that hold the
machine component in their proper places, and in the shafting used to transfer motion
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Figure 11.2: Simply Supported Uniform Beam With Point Load

and power from one part to another. Consider �rst the typical simply supported uniform
beam shown in Figure 11.2.

When considering Figure 11.2, one of the �rst questions that needs to be asked is "how
many degrees of freedom does the bending beam have?" It should not be too di¢ cult to
realized that there are in�nitely many degrees of freedom. For every particle in the beam,
there is a vertical motion, y (x; t), and there are in�nitely many particles in the beam.
Moreover, there are also in�nitely many rotations, a rotation at every cross section in the
beam, so the total number of degrees of freedom is a double in�nity. The beam is what is
called a continuous system, meaning that there are in�nitely many masses continuously
distributed in the interval [0; L].

The mathematically completely correct method for dealing with continuous systems in-
volves writing the equations of motion as partial di¤erential equations and then solving
those equations in a manner consistent with the boundary conditions. For very simple
systems, this is entirely possible, but most real systems involve complications that render
this approach impractical for engineering practice. One such complication that occurs
frequently is geometric nonuniformity. It the beam cross section varies along the length,
then the partial di¤erential equations must re�ect that variation, substantially increasing
the problem di¢ culty. A model formulated in this manner is called a continuum model,
referring to the continuous distribution of both mass and �exibility.

The alternative to the continuous system model is to approximate the beam with a �nite
number of degrees of freedom. This approach is widely used in engineering practice, and
it can be carried to a high degree of re�nement, essentially capturing all of the signi�cant
aspects of the beam vibration while employing only a large but �nite number of degrees
of freedom. This approach is called a discrete mass model, or more commonly a lumped
mass model or lumped parameter model. Only this second approach is developed for this
book.

Mechanics of Machines c 2019 Samuel Doughty



414 CHAPTER 11. MDOF VIBRATIONS

11.7.1 Flexibility and Sti¤ness

Before getting into the process of developing a lumped mass model, it is necessary to
introduce an extended understanding of sti¤ness. In earlier parts of this book, it is
assumed that readers are familiar with the typical coiled spring, usually a helical wire
form, that deforms axially with far less resistance than a straight piece of wire of similar
length. But now, what of a shaft or beam? In what way does it behave like a spring?

For the simple coiled spring, it is common to speak of the sti¤ness as the slope of the force-
de�ection curve. However, if that force-de�ection relation is inverted to show de�ection as
a function of force, the slope of that modi�ed graph is called the compliance or �exibility.
In general, it is appropriate to think of �exibility (or compliance) as the inverse of sti¤ness.

With that idea in mind, look again at Figure 11.2. Let the applied load F be one unit of
force; it does not matter whether this is 1 N, 1 lb, 1 dyne, etc., so long as consistent units
are used for all calculations. For a simply supported, uniform beam, with one unit
load applied at position a as shown in Figure 11.2, the ordinary mechanics of materials
approach to beam de�ections makes it possible to calculate the de�ection at any point x
between the supports [4],

y (x; a) = �(L� a)

6EIL

�
x3 � x

�
L2 � (L� a)2

�	
x � a

(11.77)

= �(L� a)

6EIL

(
x3 � L (x� a)3

L� a
� x

�
L2 � (L� a)2

�)
a � x

(11.78)

where

y (x; a) = de�ection at x due to unit load at a;

L = bearing span (distance between supports);

a = load location;

E = Young�s Modulus for the beam material;

I = area moment of inertia of the cross section about the neutral axis.

Note that these expressions are de�ection per unit load, not simply de�ection (there
is no force factor).

Now consider the length of the beam be subdivided at n locations, xi, where i = 1, 2,
... n; these may be evenly or unevenly spaced. Each division mark is called a station

Mechanics of Machines c 2019 Samuel Doughty



11.7. BEAM VIBRATIONS & WHIRLING 415

or node. The stations are simply placed at whatever locations are useful for later work,
as becomes evident below. Next, consider that equation (11.77) or (11.78), whichever
equation is appropriate to the location, is evaluated at each of these n locations. This
gives a list of n values of de�ection per unit load; consider this list as a column vector.
This list is called a set of in�uence coe¢ cients for a load located at x = a.

Now revise the previous step, to locate the unit load at the �rst station, and calculate the
in�uence coe¢ cients for that location. Repeat this process of calculating the in�uence
coe¢ cients for the unit load at each station in turn, arranging all the as columns within
a square (n� n) matrix, denoted as [S]. Then for the same beam subject to a system of
n loads of various values Fi located at the n stations, the total de�ections yi at each of
the stations can be calculated by superposition as8>>>>>><>>>>>>:

y1

y2
...

yn

9>>>>>>=>>>>>>;
=

26666664
S11 S12 � � � S1n
S21 S22 � � � S2n
...

...
. . .

...

Sn1 Sn2 � � � Snn

37777775

8>>>>>><>>>>>>:

F1

F2
...

Fn

9>>>>>>=>>>>>>;
(11.79)

where the Fi are no longer unit loads, but whatever actual applied load values. The
matrix of in�uence coe¢ cients is the �exibility or compliance matrix. It is symmetric
(Sij = Sji), and for the typical beam problem can easily be inverted to give the sti¤ness
matrix, [K] = [S]�1. The inverse equation is easily recognized as a force�de�ection
relation,

fFg = [K] fyg (11.80)

11.7.2 Example Calculation

Consider the simply supported shaft shown in Figure 11.3. Note that the simple supports
are at the ends; this is only necessary for equations (11.77) and (11.78) to be applicable
for the calculation of the �exibility matrix. The shaft is 1:0 m in length, with a uniform
diameter d = 65 mm. The material is steel, for which Young�s Modulus is E = 2:07 �1011
Pa and the speci�c weight is  = 76500 N/m3.

11.7.2.1 Construction of the Model

As long as the entire system consists of only the uniform shaft, there is no reason to space
the nodes other than uniformly. With this assumption, the segments between the nodes
are �x = 166:67 mm. If there were other elements on the shaft, such as wheels, disks,
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Figure 11.3: Lumped Mass Model for Uniform Shaft on Simple Supports

or diameter changes, then certainly it would make sense, indeed it would be completely
necessary, to locate a node at each such point.

The total shaft mass is computed as Mtotal = 25:8846 kg. One of the most critical issues
is how this mass should be distributed to the nodes. The method proposed here is simply
that half of the mass of each segment be distributed to each end of the segment. Since all
of the segments are of equal length in this example, this means that for the active nodes
(those that are able to move vertically) the mass at each node is mi =Mtotal=6 = 4:3141
kg. This distribution of mass only includes 5=6 of the total mass in the vibratory model
because the half segment mass at each end does not move. This is clearly only an
approximation; it is not a perfect model. The approximation can be improved by choosing
a larger number of segments. With this approximation, the resulting lumped mass matrix
is

dMc = diag (m1;m2; : : :) = 4:3141 diag (1; 1; 1; 1; 1) (11.81)

Note that the end nodes are not included; this is because they do not move as a result
of the supports.

The �exibility matrix is developed by sequentially placing a unit load at each of the
active nodes and then calculating the displacement at all of them. When this is done,
the resulting �exibility matrix [S] is

[S] = 10�8

26666666664

3:5450 5:3884 5:5302 4:3958 2:4106

5:3884 9:0753 9:7843 7:9409 4:3958

5:5302 9:7843 11:4859 9:7843 5:5302

4:3958 7:9409 9:7843 9:0753 5:3884

2:4106 4:3958 5:5302 5:3884 3:5450

37777777775
m/N (11.82)
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This is inverted to produce the sti¤ness matrix, [K]:

[K] = 108

26666666664

3:8696 �3:7250 1:6274 �0:4340 0:0108

�3:7250 5:4970 �4:1589 1:7359 �0:4340

1:6274 �4:1589 5:6055 �4:1589 1:6274

�0:4340 1:7359 �4:1589 5:4970 �3:7250

0:0108 �0:4340 1:6274 �3:7250 3:8696

37777777775
N/m (11.83)

Note that both the �exibility and sti¤ness matrices are symmetric; this is to be expected.
While these �exibility and sti¤ness matrices were developed using equations (11.77) and
(11.78), the same result could be obtained with the proper data applied in program
Shaft.Tru found in Appendix 8. That computer program applies to both uniform and
nonuniform shafts.

11.7.2.2 Eigensolutions

Provided the computer solution is written with su¢ cient generality, it is a simple matter
to change n; the number of active nodes, so that various levels of detail can be tested. The
5 station model (developed above) and a similar model employing 26 stations have both
been computed, and the results are tabulated in Table 11.1. When the eigensolutions
are obtained (whether by means of the program ChoJac.Tru (Appendix 1.9) or some
other method), it is necessary to extract the square roots to obtain the system natural
frequencies. The natural frequencies for the simply supported uniform beam as given by
the continuum model are easily evaluated as !n =

�
n�
L

�2p
EI=� where � = mass per

unit length [5]; this gives a basis for comparison to evaluate the quality of the discrete
model. When the calculations are carried out for the �ve station model, the results are
these:

The results shown in Table 11.1 indicate that the5 station model gives an excellent value
for the �rst natural frequency, a rather good value for the second natural frequency, and
less than adequate values for the higher frequencies. This is exactly what the should be
expected with so few node points. The 26 node model is in very close agreement with
the continuum model for the �rst �ve modes. It should be noted that the model with
26 active nodes produces 26 natural frequencies, and that at higher mode numbers, the
computed natural frequencies diverge from the continuum model just as the 5 station
model results diverge. The only di¤erence is that the larger model gives much better
agreement for more of the low frequency modes.
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Table 11.1 Five Station Model

Computed Natural Frequencies

5 Node 26 Node Continuum

Discrete Discrete Model

Model Model

rad/s rad/s rad/s

!1 = 826.1 827.8 826.2

!2 = 3301.2 3304.7 3304.7

!3 = 7381.6 7435.4 7435.6

!4 = 12785 13218 13218

!5 = 18293 20653 20655

The quality of the eigenvectors is also a matter of interest. The continuum model shows
that, for the simply supported uniform beam, the mode shapes are simply sinusoids.
When the mode vectors from the 5 node model are plotted, they are very jagged; there
are too few points to describe a smooth sinusoid. When the �rst four modes from the 26
node model are plotted, the results are as shown in Figure 11.4.

Figure 11.4: First Four Mode Shapes From 26 Node Model

It is evident that the more �nely the shaft model is divided, the more nearly the results
approach those from the continuum model. If the reader is wondering why the continuum
model is not simply used in place of the lumped mass model, it would be well to recall (a)
it was only applicable to a uniform shaft, and (b) that the lumped mass model applies
equally well to stepped shafts. There are few uniform shafts found in actual machinery.
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11.7.3 Whirling

In the discussion above, bending vibration of the nonrotating shaft (or shaft with mounted
rotors) is considered. Bending vibration necessarily implies alternating stress and strain
in the shaft. Imagine now instead a scenario in which:

� the shaft is bent, perhaps in a plane curve or perhaps in a complicated, three
dimensional space curve, but continuing to pass through the �xed bearing locations;

� the bent shaft simply whirls about the line of centers while maintaining the same
bent form at all times;

� the shaft may also be rotating as well, and the rotational speed and the whirling
speed may be the same or di¤erent;

� the whirling may be in the same direction as the shaft rotation (forward whirl) or
it may be opposite the shaft rotation (backward whirl).

Consider a horizontal, simply supported shaft (or shaft and rotor system) where the
x�axis runs between the two supports, with the y�axis vertical, and the z� axis hor-
izontal and perpendicular to both x and y� axes. The shaft rotates as speed 
. A
lumped mass model is required for the lateral motion of this system in response to slight
unbalance at every station. Speci�cally, assume that the center of mass at station i is ec-
centric by an amount "i at an angular position  i. The vertical and horizontal equations
of motion are of the form

dMc f�yg+ [K] fyg = 
2 dMc f"i cos (
t�  i)g (11.84)

dMc f�zg+ [K] fzg = 
2 dMc f"i sin (
t�  i)g (11.85)

These may be combined into a single matrix di¤erential equation of twice the size by
de�ning f�g = col (y1; : : : yn; z1; : : : zn) to read24 dMc [0]

[0] dMc

35n��o+
24 [K] [0]
[0] [K]

35 f�g
= 
2

24 dMc [0]

[0] dMc

358<: f"i cos (
t�  i)g

f"i sin (
t�  i)g

9=; (11.86)
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Now assume a solution of the form f�g = fXg sin!nt to give the equation0@24 [K] [0]
[0] [K]

35� !2n

24 dMc [0]

[0] dMc

351A fXg
= 
2

24 dMc [0]

[0] dMc

358<: f"i cos (
t�  i)g

f"i sin (
t�  i)g

9=; (11.87)

It is apparent that this brings up the eigenproblem again, and that solutions exist only
when the eigenvalue problem is satis�ed. Note that the eigenvalues, !2n, are are deter-
mined by the eigenvalue problem only, and are completely independent of the rotational
speed 
.

There are two signi�cant omissions in the formulation above that should be noted:

1. Gyroscopic e¤ects are not included. To be fully correct, these e¤ects should also be
incorporated into the problem, although experience shows that they are important
only at higher speeds.

2. It has been implicitly assumed that the bearings are in�nitely sti¤ and that all
deformation is in the shaft; this is never entirely true. There is always some com-
pliance in the bearing supports, and in the bearings themselves. Additionally, �uid
�lm bearings show a complicated "cross-coupling" wherein a load in one direction
results in a displacement at right angles to the load.

There is a vast literature related to the whirling problem, usually found under the head-
ings rotordynamics or shaft whirling for the reader who may wish to pursue this topic
further. This has been a topic of vigorous engineering research for many years, and
continues to be so to this day.

11.8 Lateral Rotordynamic Stability

The discussion of the previous section touches lightly on the vast area of rotordynamic
stability. This has been a subject of interest for many years, as mentioned in the historical
comment at the end of Section 10.4.3. The increased use of turbomachinery (turbocom-
pressors, jet engines, and similar machines) have focused even more attention on this
area in the past half century.

In considering simple planar beam vibrations, there is no evident question of stability.
Such a beam simply vibrates in plane motion, but internal frictional loses always limit the
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amplitude of the motion. It is clear, however, that if the vibrational motion causes the
beam to collide with the surrounding structure, there is the potential for damage. When
the scope of the discussion is expanded to include whirling, a three dimensional motion,
the potential for collisions is even greater. In machinery with very tight clearances, this
is a major concern.

Recall that the whole concept of stability is based on whether or not a system returns to its
previous operating state following a disturbance. If the excitations do not change, other
than a momentary disturbance, then the particular solution of the governing di¤erential
equations should not change. Thus the question of stability hinges upon the transient
response which is the homogeneous solution.

A homogeneous solution is stable if it dies away with the passage of time, and unstable if
it grows. Which of these behaviors occurs depends upon the sign of the real part of the
eigenvalue for each mode. If the real part of an eigenvalue is negative, that particular
mode dies away. How rapidly it dies away depends upon the magnitude of the negative
real part. If the real part of the eigenvalue is positive, the mode grows in amplitude with
the passage of time; this is clearly an instability. If the real part of the eigenvalue is
zero, indicating no damping at all, system stability is neutral, and must be considered
unstable because it does not return to the undisturbed state.

The eigenproblems of rotordyanamics are extremely complicated due to several factors.
In previous parts of this book, the only place that complex eigenvalues have been en-
countered is in connection with damped systems. In those examples, involving viscous
damping of relatively simple systems, the real part of the eigenvalue is negative in every
case, resulting in solutions that decay with time. In high-speed turbomachinery, the
�uid-structure interaction creates a peculiar phenomenon of cross coupling. This means
that a force in a particular direction results in a displacement in the direction of the force
and also a displacement at right angles to the force. The result of this is that both sti¤-
ness and damping in such cases are cross-coupled. Further, at the very high speeds often
involved, gyroscopic e¤ects must be included leading to additional cross-coupling. Finally
it should be mentioned that the sti¤ness and damping characteristics of the supporting
structure also participate in the rotor motion, further complicating the picture.

The interested reader will �nd countless technical papers on the internet related to this
subject. It remains a topic of aggressive research that will continue for years to come.

11.9 Rayleigh�s Method

In the bending vibration of shafts (or in whirling), there is very slow energy loss; to
a good approximation, energy is conserved over short time intervals. This is the basis
for Rayleigh�s Method. The development of Rayleigh�s Method in several forms is given
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in Appendix 9. The present discussion is limited to showing its application to beam
vibration and shaft critical speed calculations.

It should be noted that Rayleigh�s Method is limited to approximating the lowest natural
frequency of a vibratory system. In many cases, the �rst natural frequency is su¢ cient for
engineering purposes, but other methods must be employed if higher natural frequencies
and mode shapes are required.

11.9.1 Rayleigh Example 1

Consider the simply supported shaft used as an example of Section 11.7.2 for which good
results are already available, by both the discrete mass model and from the continuum
model. The shaft has L = 1:0 m, and a diameter d = 65 mm. The material is steel, for
which Young�s modulus is E = 2:07 � 1011 Pa and the speci�c weight is  = 76500 N/m3.
Assume for the present that the previous results are not known. An integral expression
for one of the alternate forms of Rayleigh�s Method is used here to obtain an approximate
fundamental frequency.

Assume for Y (x) the form of a simply supported uniform shaft sagging under its own
weight

Y (x) =
�gx

24EI

�
L3 � 2Lx2 + x3

�
(11.88)

where

� = mass per unit length of the shaft;

L = length between the simple supports.

The two integrals involved areZ L

0

�gY (x) dx =
�gWL4

120EI
(11.89)Z L

0

�Y 2dx =
31�W 2L7

362880E2I2
(11.90)

Taking the square root of the ratio gives the natural frequency

! =
9:877

L2

s
EI

�
(11.91)

compared to the continuum model result ! = �2

L2

q
EI
�
� 9:8696

L2

q
EI
�
.
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11.9.2 Rayleigh Example 2

Consider again the same simply supported, uniform shaft already examined several times
previously. The total weight of the shaft is 253:8505 N. To see the e¤ect of varying the
number of nodes, let n = number of active nodes, be considered as a variable. For the
uniform shaft, the location of the stations and the weight applied at each is then

xi = i
L

n+ 1
(11.92)

Wi =
WTotal

n+ 1
(11.93)

The de�ections at each station are estimated based on the de�ections of the uniformly
loaded beam, equation (11.86), used in earlier examples.

With 5 active nodes, the calculation details are as follows:

Table 11.2 Details of Rayleigh Calculation

Node Weight De�ection Product Product

Number Wi Yi � 106 WiYi � 104 WiY
2
i � 109

N m N-m N-m2

1 42:308 9:2240 3:90255 3:59974

2 42:308 15:8384 6:70097 10:61325

3 42:308 18:2231 7:70992 14:04989

4 42:308 15:8384 6:70097 10:61325

5 42:308 9:2240 3:90255 3:59974P
WiYi = 2:8916962 � 10�3P
WiY

2
i = 4:2475865 � 10�8

!Rayleigh =
p
g
P
WiYi=

P
WiY 2

i

=
p
(9:807) (2:8916962 � 10�3) = (4:2475865 � 10�8)

= 817:096 rad/s

This is the result of the 5 node model, compared to the

(1) the Jacobi eigenvalue for the 5 node model, ! = 826:1 rad/s;
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(2) the continuum model for the uniform shaft, ! = 826:2 rad/s.

It is evident that the Rayleigh approximation is only fair with this small number of active
nodes. As simple as the Rayleigh calculation is, it is easily extended to a greater number
of active nodes. The results tend to improve with the number of nodes.

Table 11.3 Rayleigh Results

For Di¤erent Numbers of Nodes

n !Rayleigh

rad/s

5 817:09642

10 823:91579

15 825:42457

20 825:99049

25 826:26246

30 826:41375

35 826:50648

40 826:56739

45 826:60954

50 826:63990

When these results are compared to the value from the continuum model, ! = 826:18186
rad/s, it is evident that the Rayleigh values are both above and below the continuum
model, depending upon the number of active nodes. It appears that two phenomena are
at work here as the number of nodes increases:

1. The higher the number of active nodes, the more nearly the discrete mass distri-
bution approximates the actual continuous mass distribution, thus bringing the
Rayleigh model closer to physical reality.

2. The approximate mode shape is not the actual dynamic mode shape; the approxi-
mation is based on a static de�ection calculation. For the system to vibrate in the
form described by this approximation, there must be additional constraints present
that sti¤en the system and tend to raise the natural frequency.

The general conclusion then is this: when the number of active nodes is large enough
to give a close approximation to the physical mass distribution, the Rayleigh natural
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frequency estimate will err on the high side, that is, the Rayleigh frequency value will be
larger than the true value. Can the reader say why this happens?

11.9.3 Rayleigh Example 3

As a �nal example of the application of Rayleigh�s Method, consider the cantilever beam
with a rigid mass attached at the tip as shown in Figure 11.5. The length of the beam
is L; the EI product is known, and the total mass of the beam is MB. The block at
the end has mass MT and mass moment of inertia Jc with respect to the center of mass
that is located a distance a from the end of the beam. The problem is to estimate the
�rst natural frequency for this system, taking into account the mass of the beam, the tip
mass, and the tip mass rotary inertia.

Figure 11.5: Cantilever Beam With Rigid Mass at Tip

In order to apply Rayleigh�s Method, an approximation for the beam de�ection is as-
sumed,

y (x; t) = yL

h
1� cos

��x
2L

�i
sin!t (11.94)

Den Hartog notes [6; p.153] that this form has no moment at the right end, x = L. In
that respect, this is a less than ideal choice for the approximate form because a moment
is required to rotate the block. Nevertheless, it has simplicity to recommend it.

Note that two vertical coordinates are indicated; there is yL is the de�ection of the end
of the beam, and yM is the displacement of the center of mass for the rigid block. These
two are related kinematically as

yM = yL + ay0L (11.95)

Using the original form for Rayleigh�s Method (see Appendix 9), the potential energy of
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bending is

V =
EI

2

Z L

0

[y00 (x; t)]
2
dx

=
EI

2

�
�2

4L2

�2
y2L sin

2 !t

Z L

0

cos2
��x
2L

�
dx

=
y2L�

4EI

64L3
sin2 !t (11.96)

The kinetic energy is a combination of discrete and continuum terms,

T =
1

2
MT _y

2
M +

1

2
Jc ( _y

0)
2
+
1

2

MB

L

Z L

0

[ _y (x; t)]2 dx

=
!2y2L cos

2 !t

2

�
MT

�
1 +

�a

2L

�2
+ Jc

�2

4L2
+MB

�
3

2
� 4

�

��
(11.97)

Note that y2L is a factor common to all terms in both T and V ; yL plays the role of a
single, generalized coordinate for the entire system. When the maximum values are taken
for each of V and T and the two are set equal, the result is then solved for the square of
the natural frequency

!2 =
�4EI

32L3
h
MT

�
1 + �a

2L

�2
+ Jc

�
�
2L

�2
+MB

�
3
2
� 4

�

�i (11.98)

It is a straight-forward matter to substitute numbers and compute a numerical result at
this point.

One of the principal points of this example is to demonstrate the ability to combine
di¤erent element models in a single analysis. In this case, the continuum beam model is
combined with the discrete model for the solid block. Further, that model for the solid
block takes into account both translation and rotation of the block, all with remarkable
ease.

11.9.4 Final Comment on Rayleigh�s Method

One of the most signi�cant aspects of Rayleigh�s Method is that it essentially converts a
problem with in�nitely many degrees of freedom into a single degree of freedom problem.
This is most evident in the third example above where yL, the displacement at the end of
the beam, becomes the single generalized coordinate with all other displacements related
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to it. This is at once very powerful, but also limiting in that the method cannot model
more than a single degree of freedom and hence can only give a single natural frequency.

As demonstrated above, Rayleigh�s Method is only an approximation, and as such can
never be considered as exact. Even in applications where a rather exact analysis is even-
tually required, it is often useful to make a quick approximation by means of Rayleigh�s
Method to assure that the more detailed study is justi�ed. It has served engineers well
for many years, and will no doubt continue to do so in the future.

11.10 Case Study �Frahm Absorber

One of the major concerns of engineering is control of vibration levels. Two types of
control are usually considered: vibration dampers and vibration absorbers. Vibration
dampers are systems that convert vibrational energy into heat and are thus limited by
their ability to reject heat. Vibration absorbers are systems that generate counteracting
forces to limit motion at the point of interest in the system by absorbing it in the motion
of the absorber. In the ideal absorber there is no heat generated and therefore no heat
limitation, but of course internal friction in a real absorber must generate heat.

By far the best known vibration absorber is the �Frahm Damper,�invented by H. Frahm
in the early 20th century (the dates 1909 and 1911 are both cited for his patent and it is
not clear which applies). The theory of this device is detailed in many places, notably
by Den Hartog [6; pp.87� 92]. It has has often been applied in both translational and
torsional forms with great success. There is one particular application of the Frahm
absorber that is of particular interest and is the subject of this case study from a real
engineering problem.

The Newington Station is a 400 MW cycling fossil fuel electrical generating plant in
Newington, NH. To be a cycling plant means that it must go from low to high output
power levels at least once (and perhaps more often) each day. This is relatively hard
duty for a power plant, the easier duty being to be �base loaded�which means to have
a steady load all the time. Cycling duty puts the entire system through severe thermal
cycles and associated fatigue and this adversely a¤ects the expected life of the plant.
Fatigue of components is a major consideration in the operation of a power plant.

The Newington plant has two induced draft fans (ID fans) driven by 4500 horsepower,
three phase induction motors at 890 rpm (synchronous speed would be 900 rpm, so
these motors have only slightly over 1% slip). The fans are mounted on concrete block
foundations as shown in the end view, Figure 11.6, and the motors (not shown in the
�gure) are directly coupled to the fans. In the original con�guration, the absorber masses
shown in the �gure were not present.
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Figure 11.6: End View of Fan Showing Two Mounted Vibration Absorbers

When the plant was initially put into operation, severe vibrations were found in the
fans. The fans could not be balanced in both the hot and cold conditions simultaneously,
although hot balancing allowed the system to operate in steady state after that condition
was reached. Ramp rates (the rate of change of the electrical load on the generator) were
another matter, however, and this is a critical issue for a cycling plant. Ramp rates
above 2 MW/min produced severe vibrations and thus limited the ability of the plant to
perform its primary function as a cycling plant.

In January, 1976, Brewer Engineering Laboratories, Inc. (BEL), under the direction of
Mr. Given A. Brewer, P.E., began work at the plant. They made measurements resulting
in a dynamic model for the fan and foundation system, and they presented three possible
alternatives for solutions. One of those alternatives was the design and �tting of dynamic
vibration absorbers (known as Frahm dampers, even though this is not strictly correct
terminology) for the fans, and the owner elected to have BEL proceed with that approach.
This was successful, and eventually the plant was able to accept increased electrical load
at rates of 20 MW/min without problems.

This project eventually involved not only BEL and Mr. Brewer, but also the noted Prof.
S.H. Crandall of MIT and a student, A.T. Guillen, who wrote an MIT BS thesis on the
problem [7]. Guillen�s paper is the source for the parameter values used in the analysis
given here, although the model and analysis here di¤ers slightly from his.

Mr. Brewer was a successful business man, and he publicized his work on this project with
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a number of articles [8]. He also received a patent on the system (US Patent 4,150,588,
Apr. 24, 1979). Mr. Brewer sold his company, BEL, to Teledyne Engineering Services
and then remained on with them in a senior consulting capacity for some time.

11.10.1 Vibration Analysis

The motion of concern is the horizontal motion at the bearing level; vertical and angular
motions are neglected. For this motion, the system is thought of as having two inertias
(before the absorbers are added): the pedestal and the rotor, that are elastically coupled,
and the pedestal is elastically coupled to ground. When the absorbers are added, if all
four of them are acting in phase as they are intended to act, then this is e¤ectively a
single additional mass, so that a total of three elastically coupled masses comprise the
system model. This model is shown in Figure 11.7.

Figure 11.7: System Model, Including Absorbers, for Horizontal Motion

The actual construction of the absorbers uses vertical rectangular beams in bending as
the spring elements. These beams are cantilevered upwards from the steel pedestal just
below the actual bearing. The absorber masses are constructed as a stack of �at plates.
The majority of the absorber stack is welded into a solid mass, but there is provision to
add or remove thin plates at the top (these are simply bolted on) to adjust the mass for
system tuning purposes.

Now consider the system equations of motion with the absorbers included:X
F1 = �K1x1 � C1 _x1 +K2 (x2 � x1) + C2 ( _x2 � _x1) +K3 (x3 � x1)

= M1�x1 (11.99)X
F2 = �K2 (x2 � x1)� C2 ( _x2 � _x1) + Fe =M2�x2 (11.100)X
F3 = �K3 (x3 � x1) =M3�x3 (11.101)
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where the external force on the rotor, Fe, is the force of unbalance, Fe = �M2"

2 cos
t

where " = eccentricity and 
 is the shaft speed. These equations are recast in matrix
form as 2666666

M1 0 0

0 M2 0

0 0 M3

7777775
8>>><>>>:
�x1

�x2

�x3

9>>>=>>>;
+

26664
C1 + C2 �C2 0

�C2 C2 0

0 0 0

37775
8>>><>>>:
_x1

_x2

_x3

9>>>=>>>;
+

26664
K1 +K2 �K2 �K3

�K2 K2 0

�K3 0 K3

37775
8>>><>>>:
x1

x2

x3

9>>>=>>>;
= M2"


2 cos
t

8>>><>>>:
0

1

0

9>>>=>>>; (11.102)

From Guillen�s paper, the system parameters are as follows:

Table 11.4 Case Study System Parameters

M1 = 8:321 � 104 kg C1 = 2:72 � 106 N�s/m K1 = 1:454 � 109 N/m

M2 = 2:153 � 104 kg C2 = 4:97 � 104 N�s/m K2 = 2:874 � 108 N/m

M3 = 7:26 � 103 kg � K3 = 6:3035 � 107 N/m

For purposes of calculation, it is assumed that the eccentricity is " = 0:5 mm.

It is useful to investigate the response of this system for di¤erent shaft speeds, in e¤ect,
a frequency response analysis. For this purpose, assume that all of the responses are
sinusoidal at the excitation frequency,

8>>><>>>:
x1

x2

x3

9>>>=>>>; =

8>>><>>>:
a1

a2

a3

9>>>=>>>; cos
t+
8>>><>>>:
b1

b2

b3

9>>>=>>>; sin
t
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Now substitute into the di¤erential equation to get

dMc


�
2 fag cos
t� 
2 fbg sin
t

�
+ [C] h�
 fag sin
t+ 
 fbg cos
ti
+ [K] hfag cos
t+ fbg sin
ti

= M2"

2 cos
t

8>>><>>>:
0

1

0

9>>>=>>>; (11.103)

Separating sine and cosine terms gives

Cosines



[K]� 
2 dMc

�
fag+ 
 [C] fbg =M2"


2 col (0; 1; 0) (11.104)

Sines

�
 [C] fag+


[K]� 
2 dMc

�
fbg = f0g (11.105)

This system can be written in terms of (6� 6) matrices by partitioning them so that24 [K]� 
2 dMc 
 [C]

�
 [C] [K]� 
2 dMc

358<: fagfbg
9=; =M2"


2 col (0; 1; 0; 0; 0; 0) (11.106)

As long as the [C] matrix is nonzero, the coe¢ cient matrix on the left is nonsingular
and can be inverted to solve for the a�s and the b�s. For the full system, including the
absorbers, there is a (6� 6) coe¢ cient matrix; if the absorbers are not present, then
the system collapses to a (4� 4) system of the same form with the vector on the right
becoming simply col (0; 1; 0; 0). Only the steady state solution is of interest, so there is
no need to �nd a homogeneous solution. Once the a�s and b�s are known, the amplitude
of the displacement for each component is simply

displ ampl =
p
a2 + b2 (11.107)

When the system parameters are substituted into the equations, it is interesting to com-
pare the original (two mass model) displacement amplitudes (Figure 11.8) with those for
the modi�ed (three mass model) system (Figure 11.9). The intended shaft speed is 890
rpm, so that 
 = 14:833 Hz. Notice that, for the original system con�guration, the worst
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possible condition happens at a frequency higher than the actual operating frequency,
between 15 and 16 Hz where the rotor displacement is calculated as approximately 4
mm. Figure 11.9 shows that, at the operating frequency, the motion of the support is
completely stopped, but this only happens at that one particular shaft speed. Notice also
in Figure 11.9 that at the operating speed, the motion of the absorber mass is quite large;
this large motion is how the absorber develops the force required to stop the motion of
the support. It also shows that, at the operating frequency, the shaft motion is not zero,
but is roughly 1 mm.

Figure 11.8: Modi�ed (Three Mass Model) Displcement Amplitudes as Functions of
Frequency (x1 - solid line, x2 - dash-dot)

11.10.2 Internal Forces

A second question of concern, both with and without the absorbers, is, �what is the force
transferred at through each of the connections?�After the motions of the several points
are known, that question can be addressed as well. Consider two points i and j moving
with displacements xi and xj and joined by a spring-damper combination (if the damper
is absent, that only simpli�es things; if one point does not move, that further simpli�es
things). Then,

xi = ai cos
t+ bi sin
t (11.108)

_xi = �
ai sin
t+ 
bi cos
t
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Figure 11.9: Modi�ed (Three Mass Model) Displcement Amplitudes as Functions of
Frequency (x1 - solid line, x2 - dash-dot, x3 - broken line)

xj = aj cos
t+ bj sin
t (11.109)

_xj = �
aj sin
t+ 
bj cos
t

The force through the connection is

F = K (xj � xi) + C ( _xj � _xi)

= K
�
(aj � ai)

2 + (bj � bi)
2�1=2 (cos cos
t+ sin sin
t)| {z }

cos(
t� )

+C

�
(aj � ai)

2 + (bj � bi)
2�1=2 (sin cos
t� cos sin
t)| {z }

� sin(
t� )

(11.110)

where

cos =
aj � ai�

(aj � ai)
2 + (bj � bi)

2�1=2 (11.111)

sin =
bj � bi�

(aj � ai)
2 + (bj � bi)

2�1=2 (11.112)
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Continuing then to get the total force,

F = K
�
(aj � ai)

2 + (bj � bi)
2�1=2 cos (
t�  )

�C

�
(aj � ai)

2 + (bj � bi)
2�1=2 sin (
t�  )

=
�
(aj � ai)

2 + (bj � bi)
2�1=2 �K2 + C2
2

�1=2
cos (
t+  �  ) (11.113)

where

cos  =
K

(K2 + C2
2)1=2
(11.114)

sin  =
C


(K2 + C2
2)1=2
(11.115)

Finally, the magnitude of the force through the connection is

jF j =
�
(aj � ai)

2 + (bj � bi)
2�1=2 �K2 + C2
2

�1=2
(11.116)

This is the basis for calculating the force through all connections in the system.

Again, when numerical values are substituted into the connection force relation, the
magnitudes of those forces can be considered as functions of the shaft speed, 
. In many
respects, the force amplitude plots, Figures 11.10 and 11.11, tell the same story as that
of the displacement amplitude plots. In the original system, the force transferred to the
support is approximate 1:2 � 106 N at the operating shaft speed. At the operating speed,
in the modi�ed system, all three forces are reduced. With the modi�cation in e¤ect, the
force to the support is zero. This is what should be expected since, at this speed only,
there is no displacement of the base as shown in Figure 11.9: But note that this is a very
localized matter, limited very narrowly to the design speed. Away from the design speed,
the force transferred to the support becomes very large. This is typical for such systems,
and explains why tuned absorbers can only be used for constant speed machinery, except
for the torsional pendulum absorber discussed in Chapter 8.

There are two important points to notice regarding the application of the Frahm damper
(technically the Frahm absorber):

1. While the motion of the primary object is completely stopped at the frequency of
interest (running speed for the machine), the other bodies in the system are still
vibrating. In point of fact, they are moving out of phase with each other so as to
cancel the forces transferred to the primary body.
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Figure 11.10: Force Amplitudes For the Original System, Force Amplitudes F1 and F12
as Functions of Shaft Speed

2. This is clearly a �tuned system�and is designed to function at a speci�c frequency.
At frequencies other than the design point, the results are likely to be worse than
if the absorber were not present.

The second point is of considerable importance in terms of choosing applications where
the Frahm absorber may be applied. The power plant fan in this application is just
about ideal because the fan speed is always very close to the design speed, 890 rpm.
Utility generator shafts are another place where shaft speed is very constant and Frahm
absorbers can be used well.

11.11 Conclusion

The whole �eld of multidegree of freedom vibration is vast and rapidly growing. All
that has been presented here is a short introduction. One of the technological advances
that has promoted this growth is the Fast Fourier Transform Analyzer that has played
a major role in connecting theory and experiment. While this chapter has leaned in the
direction of structures, in the next chapter the topic of multidegree of freedom torsional
vibrations of machine trains is explored in some detail.
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Figure 11.11: For the Modi�ed System, Force Amplitudes F1, F12, and F13 as Functions
of Shaft Speed
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Problems

11-1 The �gure shows three blocks on a ramp, able to move without friction except for the
viscous dampers shown. All the physical parameters are known (M1;M2;M3; K1; K2; K3; B1; B2)
and the geometric data (�; c1; c2; c3).

(a) Determine the equilibrium position of the system;

(b) Write the equations of motion for the system in matrix form;

(c) Using the data below, evaluate the equilibrium position values;

(d) Neglecting the damping, evaluate the system natural frequencies and mode shapes.

M1 = 2:1 kg B1 = 27 N-s/m K1 = 205 N/m L1o = 40 mm c1 = 62 mm

M2 = 1:75 kg B2 = 15 N-s/m K2 = 180 N/m L2o = 55 mm c2 = 60 mm

M3 = 2:6 kg K3 = 225 N/m L3o = 37 mm c3 = 44 mm

� = 16o

11-2 For the same system studied in problem 11-1 without damping and building on
the solution from that problem, make use of the modal transformation to answer the
questions below. All data and results from the previous problem may be used here.

(a) De�ne the modal matrix;

(b) Determine the modal mass and sti¤ness matrices;
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(c) Determine the modal solutions for each modal coordinate, using the initial conditions
given below;

(d) Transform the results of (c) back into the physical coordinates.

x1 (0) = 5 mm x2 (0) = �12 mm x3 (0) = 0 mm

_x1 (0) = 0 m/s _x2 (0) = 0 m/s _x3 (0) = 0:52 m/s

11-3 The �gure shows the same system of three blocks described in problem 11-1, with
one exception. The upper spring, K3, has been removed.

(a) Is there an equilibrium position for this system? Why, or why not?

(b) Write the equations of motion for this system in matrix form;

(c) Using the data provided in problem 11-1 and again neglecting damping, determine
the natural frequencies and mode shapes for this system;

(d) What is unusual about the eigensolutions?

11-4 For the system of three blocks on a ramp considered in problem 11-3, assume that
there is a force Fo + Fs sin
 acting up slope on the middle block.

(a) Write the system equations of motion in matrix form;

(b) Using the system data from the two previous problems while neglecting damping,
and assuming the values of Fo and Fs given below, determine the full solution for the
system motion.
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Fo = 32 N x1 (0) = 0:077 m _x1 (0) = �0:15 m/s

Fs = 9 N x2 (0) = 0:283 m _x2 (0) = �0:75 m/s

x3 (0) = 0:006m _x3 (0) = +0:25 m/s

11-5 The �gure shows a block on three vibration isolation mounting springs, K1; K2;
and K3. The block is only able to move in the y and � directions; there is no lateral
displacement. The dimensions c1; c2; and c3 are all known, positive constants. It is
assumed that the springs all have the same free length, Lo.

(a) Determine equilibrium values of y and �;

(b) Write the equations of motion for small vibratory displacements from the equilibrium
position;

(c) Using the data below, determine numerical values for the natural frequencies and
mode shapes.

K1 = 3500 N/m c1 = 850 mm M = 120 kg

K2 = 4200 N/m c2 = 150 mm Jc = 32 kg-m2

K3 = 2500 N/m c3 = 1200 mm

11-6 The �gure shows a point mass, M , suspended in the gravitational �eld from two
supports at di¤erent elevations. The spring constants, spring free lengths, dimensions
shown, and the mass are all known. Resolve motions on the inclined Y � Z coordinate
system shown. For this problem, there is no out-of-plane motion; the motion is only in
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the Y � Z plane.

(a) Develop any kinematic relations required for later use;

(b) Develop the nonlinear equations of motion for this system;

(c) Determine (in symbols) the equilibrium position of the mass;

(d) Linearize (in symbols) the equations of motion for small displacements from equilib-
rium;

(e) Use the data below to evaluate numerically the equilibrium coordinates for the mass;

(f) Use the data below to determine numerically the equilibrium loads in each spring;

(g) Use the data below to determine numerically the natural frequencies and mode shapes
for this system.

K1 = 18500 N/m K2 = 8500 N/m M = 6:1 kg

L1o = 250mm L2o = 600 mm

DH = 800 mm DV = 200 mm

10-7 The �gure shows a large ring supported on small rollers with a small solid disk
rolling inside the ring. The small disk rolls inside the ring without slipping, and the ring
rolls on the small rollers without slipping. The two small rollers are identical.

(a) Develop any kinematic results required later;

(b) Write the nonlinear equations of motion for this system;

(c) Determine the equilibrium con�guration for the system;
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(d) Linearize the system equations of motion.

11-8 The �gure shows two blocks, each having mass M and connected by a spring of
sti¤ness K. The two blocks are free to move without friction on a horizontal surface, and
when x1 = x2 = 0 the spring is relaxed.

(a) Write the equations of motion for this system in matrix form;

(b) Develop the characteristic equation, and solve for the natural frequencies;

(c) Using the data below, numerically evaluate the natural frequencies;

(d) Using the data below, numerically determine the eigenvectors (make the �rst element
1 for each eigenvector);

(e) Using the data below, determine the modal mass values and modal sti¤ness values;

(f) What is unusual about the modal equations? What impact does this have?

(g) Solve the modal equation using the initial conditions given below;

(h) Transform the solution back into the physical coordinates.

K = 1492 N/m x1 (0) = 0 m x2 (0) = 0 m

M = 3:45 kg _x1 (0) = 0:12 m/s _x2 (0) = �0:18 m/s

11-9 The �gure shows two rotors on a shaft that is �xed at the left end. The mass
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moments of inertia are related such that J1 = 2J2.

(a) Write the system equations of motion in matrix form;

(b) Develop the characteristic equation, and solve for the natural frequencies in terms of
the ratio K=J2; including a numerical coe¢ cient for each one;

(c) Obtain numerical values for the eigenvectors for each mode.

11-10 For this problem, the system appears exactly the same as that shown for problem
11-6. What is new here is that out-of-plane motion is now considered, so that there
is motion in three dimensions. All of the data given in connection with problem 11-6
applies here. Answer all of the same questions posed for problem 11-6 again, this time
allowing for out-of-plane motion.

11-11 Although the sketch for this problem looks somewhat like that for problem 11-9,
they are signi�cantly di¤erent systems. The �gure shows a torsional system comprised
of two stations, representing a prime mover and a synchronous generator, and a third
station denoted as a steadily rotating reference2. For purposes of this problem, the third

2The �gure represents, in simpli�ed form, a situation that has been a major concern for the electric
power generation industry. The left-most station is the prime mover, typically a steam or gas turbine,
or in some cases a diesel engine. The second station is the rotor of a synchronous generator while the
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station may be considered as an in�nite �ywheel, rotating at constant angular speed, 
;
it does not participate in the torsional vibration. Consider the parameters J1; J2; Kshaft;
and Kmag as known.

(a) Write the equations of motion for the torsional system in matrix form;

(b) Using the parameter values below, determine numerically the system natural frequen-
cies and mode shapes;

(c) Explain the signi�cance of each mode shape.

shaft between them, with sti¤ness Kshaft, is the physical shaft that connects the two machines. This
much is all that would be seen if the system were inspected while out of service. This suggests that, in
operation, the system will function as a free-free vibratory system, but that is not the case.
Commercial electric power generation always connects many generators in parallel through an electric

power grid. This gives improved reliability in the event of an accident that takes one generator out
of service, and it provides for load sharing so that the demand for power is distributed over all of the
generators in the grid.
In a synchronous machine, the magnetic �eld that couples the rotor and stator windings transfers

torque across the air gap between the rotating and stationary parts. The torque transfer is proportional
to the vector cross product of the magnetic �ux density (B-�eld) from the rotor winding with the B-�eld
from the stator winding. If the two �elds were perfectly aligned, there would be no torque transfer and
hence no power transferred. In operation, they are somewhat out of alignment, by an angle called the
torque angle and denoted as �. Thus the torque transferred across the air gap may be written as

Tair gap = kBrotorBstator sin �

For steady operation, there is an equilibrium value for the torque angle, �eq, such that the previous
equation is satis�ed by the equilibrium values. If the torque on the rotor is varied mechanically, due to
torsional oscillation while the �eld factors remain constant, this results in a displacement of the torque
angle. For this situation, the change in the air gap torque is

�Tair gap = kBrotorBstator [sin (�e +��)� sin �e]
= kBrotorBstator (cos�� sin �e + sin�� cos �e � sin �e)
� kBrotorBstator cos �e ���

This says that, for small angular displacements from the equilibrium position, the air gap acts like a
torsional spring with sti¤ness

Kmag = kBrotorBstator cos �e

Thus when the system is in operation and connected to a semi-in�nite external electrical system, the
external system acts like a �ywheel, rotating at constant speed and connected to the present system by
a torsion spring with sti¤ness Kmag.
As with any oscillatory system, there is the possibility of resonance, and torsional resonance leads, in

many cases, to shaft failure or other mechanical damage. This was �rst noted in the US power industry
in the early 1970s, and became the subject of intensive study. Most of the work is reported under the
heading Subsynchronous Resonance (SSR), and there is much published work available on the internet
for those who wish to pursue the topic further.
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J1 = 17 kg-m
2 Kshaft = 1:375 � 107 N-m

J2 = 18:5 kg-m
2 Kmag = 3:65 � 105 N-m
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Chapter 12

Torsional Vibrations

12.1 Introduction

The previous chapter dealt with multidegree of freedom vibrations, and from one per-
spective, that includes the topic of torsional vibration. Seen from an alternate point of
view, torsional vibration is a unique topic, presenting many problems in modeling and
analysis not found in the typical structural multidegree of freedom problem. Because the
design of machinery is a uniquely mechanical engineering task, the latter point of view is
taken here, and special care is taken to develop the unique aspects of torsional vibration
of machinery.

There are many machinery situations in which torsional vibration is of engineering con-
cern. One in particular stands out, and that is systems that involve slider-crank machines,
either as prime movers (internal combustion engines, steam engines) or as driven machin-
ery (reciprocating compressors). Slider-crank machines are given particular emphasis in
this chapter because of (1) their wide application in engineered systems, and (2) their
close connection with the earlier material of this text.

One point that needs to be clear from the beginning is that everything in this chapter
relates to what is commonly called steady state operation of machines, as opposed to
transient operations such as start-up or shut-down. The speci�c meaning of steady state
is discussed in more detail in the chapter, but it is important to start with this idea at
least roughly in mind.

The subject is rather complicated, and requires the analyst to draw upon knowledge in
kinematics and dynamics of mechanisms, mechanics of materials, thermodynamics, and
numerous topics in applied mathematics. The physical phenomena involved are rather
subtle, and often di¢ cult to visualize. Because of the diversity of ideas involved, it is
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useful for the reader to have an overall outline of the chapter in mind before proceeding,
lest he become lost in the details. To that end, consider the following short chapter
outline:

1. Introduction;

2. Introductory example, showing in some detail the types of motion to be encoun-
tered;

3. Component modeling, with particular attention to shaft sti¤ness, variable inertia in
slider-crank mechanism, and damping estimation, and internal combustion engine
cylinder pressure evaluation;

4. System equations of motion, �rst in the complete nonlinear form and then with
linearization and periodic excitation;

5. Discussion of the several approaches to the solution;

6. Development of the Holzer technique for both free and forced vibrations;

7. Detailed torsional vibration analysis for a simple three station system;

8. Closing comments.

The length of this short outline underscores the complexity of the subject matter; the
reader may need to refer back to this frequently to keep a clear vision of the process. In
addition to the material within this chapter, the reader should be aware of the discussion
in Appendix 5.2 dealing with internal combustion engine thermodynamic cycles and
cylinder pressure modeling and data for the �nal example.

12.2 Introductory Example

Consider a very simple system, consisting of two disks, with mass moments of inertia J1
and J2, joined by a shaft with torsional sti¤ness K; all as shown in Figure 12.1. There are
any number of real systems that are approximated by such a simple system, including (1)
a ship�s engine, shaft and propeller system; (2) a steam or gas turbine driven generator
set; (3) an engine driven saw at a logging camp saw mill; (4) an aircraft engine, shaft, and
propeller; (5) a diesel engine driven generator or pump. Assume for this example that
there is no damping in the system. The angular positions of the two disks are described
by angular coordinates, �1 and �2, both positive in the same sense. The external torques
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acting on the two disks are T1 and T2, taken positive in the same sense as the two angles,
�1 and � and are assumed to be of the form:8<: T1

T2

9=; =

8<: T0

�T0

9=;+
8<: TC1

TC2

9=; cos
t+
8<: TS1

TS2

9=; sin
t (12.1)

The value T0 is the useful torque, while all of the other terms have zero average value
and serve only to excite torsional vibration in the system. The frequency 
 is often
the shaft speed as is assumed here, but that is not essential. Excitations also arise at
other frequencies associated with multiples of the shaft speed, gear mesh frequencies, van
passing frequencies, and other phenomena within the system. The system equation of
motion is 2666 J1 0

0 J2

77758<: ��1��2
9=;+

24 K �K

�K K

358<: �1

�2

9=;
=

8<: T0

�T0

9=;+
8<: TC1

TC2

9=; cos
t+
8<: TS1

TS2

9=; sin
t (12.2)

The solution is made by modal analysis, but there is a twist involved.

Figure 12.1: Two Station Model for the Introductory Example

12.2.1 Free Vibration Analysis - Eigensolutions

For the free vibration analysis, all of the exciting torques are ignored, and the system
natural frequencies and mode shapes, the eigensolutions, are determined. Following the
example of Section 11.4, for this system, the characteristic equation is

!2
�
!2J1J2 �K (J1 + J2)

�
= 0 (12.3)
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with solutions

!20 = 0 !21 =
K (J1 + J2)

J1J2
(12.4)

The associated mode vectors are

fAg0 =

8<: 11
9=; fAg1 =

8<: 1

�J1=J2

9=; (12.5)

The alert reader may notice several new things about these eigensolutions. The �rst,
perhaps, is the use of the zero subscript, but much more important is the !0 = 0 value.
Associated with these there is the mode shape consisting of fAg0 = col (1; 1) ; with no
sign changes. None of these were seen in Chapter 11, but here they appear immediately.

The unique character of torsional vibrations is evident in the zero modal sti¤ness for
the �rst mode as implied by the zero natural frequency. This re�ects the fact that
the system is positive semide�nite, rather than positive de�nite. A system is positive
de�nite if every possible displacement results in positive potential energy; a system is
positive semide�nite if some displacements result in positive potential energy but there
exists other displacements for which the potential energy remains zero. Because of the
free-free nature of the shaft, a rigid body rotation of the entire system does not store any
strain energy.

12.2.2 Modal Transformation

The eigensolutions found above form the basis for the modal transformation. The modal
matrix, [A], is composed of the mode vectors in the usual fashion:

[A] = [fAg0 j fAg1] =

24 1 1
1 �J1=J2

35 (12.6)

As introduced in Section 11.5.1, the modal transformation uses the modal matrix as a
transformation matrix, such that

f�g = [A] f�g (12.7)

where f�g = col (�1 (t) ; �2 (t)) is the column vector of modal coordinates. Applying this
transformation to the equation of motion gives

dJc
n
��
o
+ [K] f�g = fT (t)g

[A]T dJc [A]
n
��
o
+ [A]T [K] [A] f�g = [A]T fTg (12.8)
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all exactly as done in Chapter 11. As before, the triple matrix products are of particular
interest, because each of them results in a diagonal matrix:

[A]T dJc [A] =

24 1 1
1 �J1=J2

352666 J1 0

0 J2

777524 1 1
1 �J1=J2

35
=

2666 J1 + J2 0

0 (J1=J2) (J1 + J2)

7775
= dMc (12.9)

[A]T [K] [A] =

24 1 1
1 �J1=J2

3524 K �K

�K K

3524 1 1
1 �J1=J2

35
=

24 0 0

0 K [(J1 + J2) =J2]
2

35
= dKc (12.10)

The [A]T also multiplies the right side of the equation, so it is necessary to see how this
a¤ects the torque terms.

[A]T fTg =

24 1 1
1 �J1=J2

358<: T1

T2

9=;
=

8<: 0

T0 [1 + (J1=J2)]

9=;+ cos
t
8<: TC1 + TC2

TC1 � (J1=J2)TC2

9=;
+sin
t

8<: TS1 + TS2

TS1 � (J1=J2)TS2

9=; (12.11)

It is signi�cant that the useful torque, T0, is not a part of the excitation in the �rst modal
equation of motion; the only contributions there are from the sinusoidal terms. All of
the original excitation torques appear in the excitation for the second mode.
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12.2.3 Modal Response Solutions

The solution proceeds by next solving the modal di¤erential equations, to obtain the
modal responses as functions of time, �1 (t) and �2 (t). After this is complete, the physical
displacements are reconstructed through the modal transformation.

12.2.3.1 Zero Frequency Mode Forced Response

The term zero frequency mode refers to the �rst mode of a free-free system, pointing to
the fact that the modal sti¤ness in this mode is zero. The equation of motion for the
�rst mode is

M00
��0 = (J1 + J2) ��0 = (TC1 + TC2) cos
t+ (TS1 + TS2) sin
t (12.12)

This is simply the equation of motion for the system considered as a rigid body, which is
exactly what the zero frequency mode represents. The equation can be solved by direct
integration to give,

�0 (t) = � 1

(J1 + J2) 
2
[(TC1 + TC2) cos
t

+(TS1 + TS2) sin
t+ C1
t+ C2] (12.13)

This is the full solution for the �rst mode, and it includes two arbitrary constants, C1
and C2, to be evaluated later to satisfy the initial conditions.

12.2.3.2 Twisting Mode Forced Response

For the simple system considered here, there is only one twisting mode, the second mode
of the system. The equation of motion governing this mode is

M11
��1 +K11�1 = T0 [1 + (J1=J2)]

+ [TC1 � (J1=J2)TC2] cos 
t
+ [TS1 � (J1=J2)TS2] sin
t (12.14)

where the modal mass and sti¤ness are

M11 = (J1=J2) (J1 + J2) (12.15)

K11 = K [(J1 + J2) =J2]
2 (12.16)
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There may be some confusion regarding the subscripts. To emphasize the zero natural
frequency of the �rst mode, the subscript 0 is assigned to the mode vector and associated
properties; that is the rigid body mode. The subscript 1 then refers to what is actually
the second mode, which is also the �rst twisting mode. Thus M11 and K11 are actually
taken from the (2; 2) positions of their respective matrices.

The homogeneous and particular solutions are found in the usual manner. The complete
solution for the second mode is the sum of the homogeneous and particular solutions,

�1 (t) = �1 cos!1t+ �1 sin!1t+ T0 �
J2

K (J1 + J2)
(12.17)

+
[TC1 � (J1=J2)TC2]
M11 (!21 � 
2)

cos
t+
[TS1 � (J1=J2)TS2]
M11 (!21 � 
2)

sin
t

12.2.4 Physical Response Reconstruction

In order to reconstruct the physical responses, the modal transformation is applied to
the two expressions above. Thus,

8<: �1 (t)

�2 (t)

9=; = [A]

8<: �0 (t)

�1 (t)

9=;
=

8<: �0 (t) + �1 (t)

�0 (t)� (J1=J2) �1 (t)

9=; (12.18)

The detailed expressions are then

�1 (t) = � 1
(J1+J2)
2

[C1
t+ C2] Uniform, Steady Rotation

� 1
(J1+J2)
2

[(TC1 + TC2) cos
t+ (TS1 + TS2) sin
t] Rigid Body Rolling

+�1 cos!1t+ �1 sin!1t Free Vibration Response

+T0 � J2
K(J1+J2)

Steady Twist

+ [TC1�(J1=J2)TC2]
M11(!21�
2)

cos
t+ [TS1�(J1=J2)TS2]
M11(!21�
2)

sin
t Dynamic Twist

(12.19)
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�2 (t) = � 1
(J1+J2)
2

[C1
t+ C2] Uniform, Steady Rotation

� 1
(J1+J2)
2

[(TC1 + TC2) cos
t+ (TS1 + TS2) sin
t] Rigid Body Rolling

� (J1=J2) [�1 cos!1t+ �1 sin!1t] Free Vibration Response

�T0 � J1
K(J1+J2)

Steady Twist

� (J1=J2)
�
[TC1�(J1=J2)TC2]
M11(!21�
2)

cos
t+ [TS1�(J1=J2)TS2]
M11(!21�
2)

sin
t

�
Dynamic Twist

(12.20)

It is important to note that the terms identi�ed as Uniform, Steady Rotation and Rigid
Body Rolling are identical in both expressions. This means that there is no twisting
associated with these parts of the motion, only rigid body rotation.

Rigid body rolling has confused many experimental studies because it occurs at the forcing
frequency and appears at both stations, and yet it does not involve dynamic elastic
deformation because it represents a rigid body motion. It is for this reason, that it is
important to be aware that the rigid body rolling mode is present, in order to properly
interpret experimental data taken on actual operating machinery. It does not cause any
dynamic strain in the shaft, although there is usually static strain involved.

No damping is included in the mathematical model above, but it should be understood
that there is always damping in real physical systems. For this reason, all of the free
vibration response terms eventually disappear in the actual physical motion while all of
the other terms continue on inde�nitely.

The appearance of solution terms involving 
t suggests that it is useful to consider a
rotating reference mark, a line that rotates about the shaft axis at the nominal shaft
speed, 
. The angle from a �xed reference to the rotating mark is then simply 
t,
where t is the time. The reference mark rotates at constant speed, and all stations
vibrate torsionally about this rotating reference. This idea appears several times in what
follows.

12.3 Component Modeling

In the introductory example of the previous section, it was assumed that the system
had been previously modeled as a two degree of freedom system, and that the sti¤ness
and mass moment of inertia values were known. That is rarely the case in practice. The
analysis usually starts from drawings of the piece parts and some overall system assembly
drawings; the mathematical model must be extracted from these drawings and the data
contained in them. Perhaps the �rst decision to be made is which components to consider
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as rigid bodies with mass and which to treat as elastic members without mass. This is
largely a matter of experience applied to each speci�c case, since all real bodies have
both mass and �exibility.

12.3.1 Mass Moments of Inertia

Because rotational motion is the primary concern, the physical property characteristic of
each rigid body is its mass moment of inertia (MMOI). In some cases, the mass moment of
inertia value will be provided by a component manufacturer and speci�ed on the drawing.
When this is available, this data should always be used.

At times, this manufacturer supplied value is given indirectly as a quantity called Wk2;
this usage is particularly common in the electrical machinery industry (motors, gen-
erators). This quantity is the product of the weight with the square of the radius of
gyration. All that is necessary to obtain the mass moment of inertia is to divide Wk2 by
the acceleration of gravity,

J =
1

g

�
Wk2

�
=
W

g
k2 =Mk2 (12.21)

12.3.1.1 Simple Rotor Station

Where there is no manufacturer provided data, the analyst often needs to calculate a
moment of inertia value based on the part drawing. For simple, �at disk-like devices
mounted on the shaft, this is easily done using the well known formula from elementary
dynamics,

J =
1

2
MR2 (12.22)

where

M = mass of the �at disk

R = outer radius of the disk

Many shaft mounted devices have more complicated shapes than a simple disk, but they
often remain axisymmetric. In such cases, the methods of Appendix 4 may prove useful.
See for example the gear blank calculation in Appendix 4.4. The schematic representation
of a simple station is primarily symbolic of its mass moment of inertia, as indicated in
Figure 12.2.
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Figure 12.2: Station Mass Moment of Inertia Representation

The short horizontal line along the axis of rotation is representative of the shaft that
connects this station to those on either side. The shaded circular areas at the ends of
the vertical line are intended to symbolically indicate mass at a radial distance from the
axis of rotation. (When drawn in haste or by hand, the circles are often left unshaded.)
The notation Ji simply indicates that there is a speci�c value for the mass moment of
inertia associated with the ith station.

12.3.1.2 Slider-Crank Station

Modeling of a single engine cylinder is more complicated. It is a single degree of freedom
system fully de�ned by the crank angle �, so the Eksergian�s equation from Chapter 7 is
applicable. The slider-crank system for analysis is shown in schematic form in Figure 12.3
where the mechanism is shown inclined away from the vertical. The necessary kinematic
analysis for determining all secondary coordinates in terms of the primary variable, the
crank angle �, is developed in Chapter 2.

The kinetic energy of the complete slider-crank system is

TSliderCrank = TCrank + TConRod + TWristP in + TPiston

=
1

2
_�
2fJ1o +M2

�
K2
2cx (�) +K2

2cy (�)
�

+(Jwp + J2c)K
2
� (�) + (Mwp +M3)K

2
x (�)g (12.23)

This is a slight extension of equation (7.8). Note that for this particular engine construc-
tion, the wrist pin is assumed to be a press �t in the connecting rod and thus to rotate
with it. For this reason, the mass moment of inertia of the wrist pin is included with that
of the connecting rod, while the mass of the wrist pin is included with the piston with
which it travels. If the wrist pin were �xed in the piston, its mass would still be included
with the piston, but there would be no rotational energy associated with the wrist pin.
In the event that the wrist pin is �oating, that is, neither �xed in the connecting rod nor
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Figure 12.3: Slider-Crank Schematic

the piston, its motion is indeterminate and a correct model requires a considerably more
detailed analysis.

From the kinetic energy, the generalized inertia is extracted in a form parallel to that of
equation (7.9),

I (�) = J1o +M2

�
K2
2cx (�) +K2

2cy (�)
�

+(Jwp + J2c) K
2
� (�) + (Mwp +M3)K

2
x (�) (12.24)

The centripetal coe¢ cient is calculated by di¤erentiation,

C (�) = M2[K2cx (�) L2cx (�) +K2cy (�) L2cy (�)] (12.25)

+(Jwp + J2c) K� (�) L� (�) + (Mwp +M3) Kx (�) Lx (�)

If the objective is only to prepare the nonlinear equations of motion for a simulation, the
results above are su¢ cient. Since the objective here is to prepare the problem for the
application of linear vibration theory, the variable inertia requires further consideration.
When the variable generalized inertia and the centripetal coe¢ cient are plotted for a
typical slider-crank, the results are as in Figure 12.4.

The function I (�) is always positive (never zero), which suggests that it can be replaced,
at least approximately, by an average value. But the function of actual importance is
1=I (�), rather than I (�) itself. Therefore, it is this function that should be averaged.
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Figure 12.4: Generalized Inertia and Centripetal Coe¢ cient for Typical Crank Station

Biezeno and Grammel [1] indicate that the preferred average value of I (�) is J1,

J1 =

�
1

2�

Z 2�

0

1

I (�)
d�

��1
(12.26)

Thus the value J1 is thus used in place of I (�) as a step toward linearizing the equations
of motion. Appropriate means for dealing with the centripetal coe¢ cient arise later when
the equations of motion are assembled.

12.3.2 Sti¤ness

Torsional sti¤ness is a property of the shaft connecting two stations. The simplest possible
shaft is just a circular rod of constant diameter. For such a simple shaft of length L and
diameter d, it is known from mechanics of materials that the application of a torque T
produces a twist �� from end to end that can be computed according to

�� =
TL

JAG
(12.27)

where

JA = area polar moment of inertia of the cross section = �d4=32

G = shear modulus of the shaft material
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The reader should be alert to avoid confusion between JA meaning the area polar moment
of inertia of the shaft and Ji meaning the axial mass moment of inertia of a station.
This is an unfortunate overuse of the symbol J , but is is a long established engineering
convention.

12.3.2.1 How Long Is A Shaft?

From equation (12.27), the torsional sti¤ness and compliance are evidently

K =
T

��
=
JAG

L
(12.28)

C = 1=K =
L

JAG
(12.29)

This seems to suggest that the calculation of shaft sti¤ness is a simple matter, but
consider the situation shown in Figure 12.5 where a gear is mounted on a motor shaft.

Figure 12.5: What is the e¤ective shaft length?

It is assumed that the shaft material is known (so that the shear modulus is also known
from tabulated data), the shaft is uniform in diameter so there is no di¢ culty in de-
termining the area polar moment of inertia, but what is the appropriate length to use?
Would the reader use L1, or L2, perhaps L3, or maybe L4? Or maybe yet some other
length? This is one of the many perplexing problems in modeling torsional vibration
problems, and there are no sharply de�ned answers. Obtaining good results is very much
an art! Even a detailed �nite element analysis does not provide a valid answer because
so much depends upon the unknowable details regarding the �t of the parts on the shaft,
the amount of friction developed at the interface.
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Consider how torque is transferred from a station (the motor rotor or the gear) onto the
shaft. Where does this torque transfer occur? The transfer must happen in the lengths
where the station and the shaft are in contact. This means that the e¤ective length,
Leff must be greater than L2, because the L2 section of the shaft is not in contact with
either station and is thus exposed to the full torque. Somewhere, in the contact zone,
the frictional shear stress between the shaft and the station must gradually transfer the
torque from one to the other.

For the situation shown in Figure 12.5, the two contact zones are of length c1 and c2
(assuming that the shaft extends completely through the motor rotor as is typical). A
rough rule of thumb, to be used only in the absence of better information, is to say that
the complete torque transfer occurs 1=3 of the way through the contact zone. Thus, for
this example, the e¤ective length and the estimated sti¤ness are

Leff = L2 +
1

3
(c1 + c2) (12.30)

Kest =
JAG

Leff
(12.31)

In particular cases, there may be better estimates available or actual measurements, in
which case they should certainly be used.

12.3.2.2 Stepped Shafts

Unfortunately, this is not the end of di¢ culties in sti¤ness modeling. Uniform shafts are
relatively rare in actual machinery, while stepped shafts are very common. Steps are often
used to locate mounted structures (motor rotors, turbine wheels, gears, �ywheels, etc.).
It is therefore necessary to consider how steps a¤ect shaft sti¤ness. For this purpose,
consider the shaft shown in Figure 12.6. Note that a �llet radius at the step is shown in
the �gure. Sharp steps are always to be avoided, and the size of the �llet radius, rf , is
an important parameter of the stepped shaft sti¤ness.

The complete shaft is composed of two cylindrical segments, lengths L1 and L2, with
diameters D1 and D2; where D1 < D2; in the discussion of this topic only, the smaller
diameter is always denoted D1. With all dimensions and material properties known, it
is a simple matter to compute the compliance (reciprocal of sti¤ness) for each segment
alone:

C1 =
��1
T

=
L1
JA1G

=
32L1
�GD4

1

(12.32)

C2 =
��2
T

=
Ll2
JA2G

=
32L2
�GD4

2

(12.33)
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Figure 12.6: Stepped Shaft With Fillet

where the use of the same value of G implies that both segments are made of the same
material. Note that ��1 and ��2 are the twist angles for the individual segments, and
��oa is the overall twist. The same torque T passes through both segments, and the
twist angles are additive, so the overall torque-twist relation appears to be

��oa = ��1 +��2

= T (C1 + C2) (12.34)

Equation (12.34) indicates that the apparent compliance is simply the sum of the indi-
vidual compliance values. This is exactly the result developed in elementary mechanics
for springs in series, so many are surprised to learn that the analysis above is in error.
The compliance value computed in this manner is too small, because the e¤ect of the
step is not properly taken into account.

The error lies in assuming that the full length L2 has e¤ective diameter D2. Although
this is geometrically true, the material at the shoulder is not e¤ective in supporting the
transmitted torque because no shear stress develops near the shoulder of the step. In
progressing along the shaft length, the shear stress pattern transitions smoothly from the
smaller to larger diameter, as shown in Figure 12.7. The material close to the exterior
corner is a "dead zone," a volume of material that is ine¤ective for torque transfer.

With this understanding, it becomes evident that the size of the �llet radius is very
signi�cant; a larger �llet radius provides a smoother transition. The e¤ect of the shoulder
is to increase the overall compliance because the transition from D1 to D2 e¤ectively
occurs gradually inside the length L2.

Because of the extreme importance of this topic for internal combustion engines, it was
the subject of extensive experimental investigations long before �nite element analysis
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Figure 12.7: Shear Stress Distribution at a Step

became available. Much of that work was reported by BICERA [2] and by W.K. Wilson
[3]. Although their approaches di¤er slightly, their results are similar. The approach
followed here is that of BICERA, namely to express the increased compliance as an
additional length to be added to L1 at diameter D1. If the additional e¤ective length
is denoted as �L, the experimental results can be presented in graphical form showing
�L=D1 as a function of the diameter ratio D2=D1 with the �llet radius ratio rf=R1 as a
parameter, as shown in Figure 12.8, where R1 = D1=2.

In order to apply the results shown in Figure 12.8, the ratios D2=D1 and Rf=R1 are �rst
evaluated. Note that, if D2=D1 < 1:3; there is no data available, but reason suggests
that the curves should pass through the point (1; 0). Similarly, for D2=D1 > 3; there is
no data available, but the curves are fairly �at by that point. If Rf=R1 > 0:5, the �llet is
very large and no data are available. Provided D2=D1 and Rf=R1 are within the ranges
of the available data, the ratio �L=D1 is either read directly from the graph or estimated
by interpolation for Rf=R1 values not shown. The additional compliance due to the step
is computed as

�C =
32
�
�L
D1

�
D1

�GD4
1

=
32

�GD3
1

(�L=D1) (12.35)

The overall compliance of the stepped shaft is then

Coa = C1 +�C + C2 (12.36)

and the overall sti¤ness is the reciprocal of this value. Although this process is conceptu-
ally quite simple, accurately reading the data from the plotted curves and interpolating
for a �nal value of �L=D1 is rather tedious. In order to make the data more useful, each
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Figure 12.8: E¤ective Additional Length of a Shaft Step

of the curves is �tted (in the least squares sense) by a cubic polynomial of the form

�L

D1

� co + c1

�
D2

D1

�
+ c2

�
D2

D1

�2
+ c3

�
D2

D1

�3
(12.37)

For each value of the ratio Rf=D1; the required polynomial coe¢ cients are given in Table
12.1:

Table 12.1 Polynomial Coe¢ cients for Shaft Step Compliance

Rf=R1 co c1 c2 c3

0:5 �0:04120449 +0:06629457 �0:03078916 +0:00473217

0:4 �0:05880530 +0:08379197 �0:02406529 �0:00230211

0:3 �0:14435611 +0:20611966 �0:02406529 +0:00793266

0:2 �0:22942227 +0:31729433 �0:10358512 +0:01135170

0:1 �0:34024899 +0:47824631 �0:16669651 +0:01956535

0:0 �0:39996364 +0:57104651 �0:19986226 +0:02354454

The curves in Figure 12.8 are generated using these polynomial �ts; for the original
curves, the reader is referred to Reference [2].
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12.3.2.3 Numerical Example

For a numerical example of the application of the stepped shaft calculations, consider
the roller shaft shown in Figure 12.9. The torsional compliance of the complete shaft is
to be computed. Note that D1, D2 , L1 and L2 for this example are not the same as their
meaning in the previous example and must be properly interpreted to use the results of
that analysis.

Figure 12.9: Roller Shaft

The following dimensional data apply to Figure 12.9.

L1 = 2050 mm D1 = 280 mm

L2 = 2125 mm D2 = 650 mm

L3 = 1850 mm D3 = 320 mm

rf1 = 35 mm rf2 = 25 mm

G = 79:3 GPa

Breaking this problem down into parts, there are compliances to be calculated for �ve
segments:

1. A simple cylinder of diameter D1 and length L1;

2. A shoulder increment for the transition from D1 to D2 with �llet radius rf1 ;

3. A simple cylinder of diameter D2 and length L2;

4. A shoulder increment for the transition from D2 to D3 with �llet radius rf2 ;

5. A simple cylinder of diameter D3 and length L3.
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The calculations follow below, where all dimensions are expressed in meters:

1. For the �rst simple cylinder, the compliance is

C1 =
32L1
�GD4

1
= 32�2:050

��79:3�109(0:280)4 = 4:28399 � 10
�8 rad/(N-m)

2. For the left shoulder increment, two ratios are �rst required:

D2=D1 = 0:650=0:280 = 2:32143

rf1=R1 = 2 (0:035) = (0:280) = 0:25

Going to the curves of Figure 12.8, the �llet radius ratio lies between two of the curves
plotted, so interpolation is required. The result is

�L
D1
= 0:07615065

�L = (0:07615065) (0:280) = 2:13222 � 10�2

�C12 =
32��L
�GD4

1
= 32�2:13222�10�2

��79:3�109(0:280)4 = 4:45581 � 10
�10 rad/(N-m)

3. For the large diameter cylinder in the center,

C3 =
32�2:125

��79:3�109(0:650)4 = 1:52909 � 10
�9 rad/(N-m)

4. For the right shoulder increment, beginning with the ratios

D2=D3 = 0:650=0:320 = 2:03125

rf2=R3 = 2 (0:025) =0:320 = 0:15625

Going again to the curves of Figure 12.8, interpolation is again required. The results are

�L
D3
= 9:3569407 � 10�2

�L = (9:3569407 � 10�2) (0:320) = 2:99422 � 10�2 m

�C23 =
32��L
�GD4

3
= 32�2:99422�10�2

��79:3�109(0:320)4 = 3:66784 � 10
�10 rad/(N-m)

5. For the �nal simple cylinder, the compliance is

C5 =
32�1:850

��79:3�109(0:320)4 = 2:2662 � 10
�8 rad/(N-m)

6. Finally, the overall compliance is the sum of the compliances,
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Coa = C1 + C12 + C2 + C23 + C3

= 4:45581 � 10�10 + 4:45581 � 10�10 + 1:52909 � 10�9

+3:66784 � 10�10 + 2:2662 � 10�8

= 2:544 9 � 10�8 rad/(N-m)

The overall sti¤ness is then found as the inverse of overall compliance:

Koa = 1=Coa =
1

2:544 9�10�8 = 3:92943 � 10
7 N-m/rad

12.3.3 Damping

Energy losses come about in many forms, including viscous friction, Coulomb (dry) fric-
tion, internal material hysteresis, air drag, and other loss mechanisms. The only one
of these phenomena that lends itself to mathematical analysis is viscous friction, so it
is common practice to treat all losses as viscous losses. This is clearly a compromise,
but it is a well established engineering practice with generally good results. Damping
is considered in many previous problems, so the discussion here is limited to internal
combustion engines, motors, and generators in particular. There are two fundamental
types of damping to be considered: (1) internal damping, and (2) external damping.

Internal damping exists between adjacent stations in the torsional system, and is often
called station-to-station damping. In the absence of speci�c damping devices included in
the rotating assembly, station-to-station damping is usually only very slight in machinery
components (steel shafts, etc.), and is largely due to internal material hysteresis. As such,
it is very di¢ cult to correctly model this type of damping. It is often neglected entirely,
or only a small nominal viscous damping value is assigned.

External damping is often called station-to-ground damping, a term that describes the fact
that it exists directly between the rotating station and the stationary ground. Station-
to-ground damping includes torques such as the viscous friction in a �uid-�lm bearing,
air-drag (windage) on the rotating assembly, and both viscous and dry friction in an
engine piston cylinder.

Figure 12.10 shows two adjacent stations in a damped torsional system, numbered sta-
tions 1 and 2 for this discussion. The inertias at these two stations are J1 and J2; and
the sti¤ness between them is denoted as K12. Station-to-station damping is indicated
with the coe¢ cient c12. Finally, station-to-ground damping is denoted with coe¢ cient
d2, indicating that the damping at station 2 acts directly to ground.

There are other vibration limiting devices as well. Usually these involve additional iner-

Mechanics of Machines c 2019 Samuel Doughty



12.3. COMPONENT MODELING 467

Figure 12.10: Schematic Representation for a Damped Torsional System

tias (with additional degrees of freedom) coupled to the station primary inertia, either
by elastic or viscous action, or as a pendulum. The theory of the pendulum absorber is
sketched as an example in Section 8.6.2. A detailed discussion of other damping mech-
anisms is beyond the scope of the present development, but the reader should be aware
of their existence.

12.3.3.1 Theoretical Approach

Viscous friction is to be expected at every moving contact within the slider-crank mech-
anism. This includes

1. Main journal friction between the crank journal and the bearing,

2. Crank pin friction between the crank and the connecting rod,

3. Wrist pin friction between the connecting rod and the piston, and

4. Piston friction against the cylinder wall.

The virtual work of the viscous friction forces accounts for all of these,

�Wvf = �Bcj
_� �� �Bcp

�
_� + _�

�
� (� + �)�Bwp

_� ���Bcb _x � _x

= ��� _�fBcj +Bcp [1 +K� (�)]
2 +BwpK

2
� (�) +BcbK

2
x (�)g

= �B (�) _� �� (12.38)
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where the subscripts denote these quantities:

vf = total viscous friction in the slider-crank

cj = crank journal

cp = crank pin

wp = wrist pin

cb = cylinder bore

The �nal result is,

B (�) = Bcj +Bcp [1 +K� (�)]
2 +BwpK

2
� (�) +BcbK

2
x (�) (12.39)

where B (�) is the overall, e¤ective viscous coe¢ cient for the slider-crank mechanism. In
most cases it is exceedingly di¢ cult to assign the individual values for Bcj; Bcp; Bwp; and
Bcb, but in any event, the expression for B (�), shows that the net viscous coe¢ cient is
position dependent, and identi�es the weighting factors associated with each individual
coe¢ cient.

12.3.3.2 Engine Cylinder Damping

At a more practical level, for an engine cylinder, the station-to-ground losses are usually
more signi�cant than internal shaft losses. If internal shaft damping is neglected, it is
reasonable to assign all losses to station-to-ground damping. In an internal combustion
engine, the power available before friction losses is the indicated power, Pindicated, obtained
from the P �V diagram. The friction losses at each engine cylinder absorb some power,
and from this a damping coe¢ cient for the station-to-ground damping at each crank can
be estimated according to

Ploss�eng�cyl =
�
1� �eng

�
Pindicated = (
 � deng) � 
 = 
2 � deng

deng�cyl =

�
1� �eng

�

2

Pindicated (12.40)

where �eng is the mechanical e¢ ciency of the engine, the ratio of shaft power to indicated
power, and deng is the station-to-ground damping coe¢ cient associated with the partic-
ular station representing the power cylinder. "Typical values for a modern automotive
engine at wide-open or full throttle are 90 percent at speeds below about 30 to 40 rev/s
(1800 to 2400 rev/min), decreasing to 75 percent at maximum rated speed. As the engine
is throttled, mechanical e¢ ciency decreases eventually to zero at idle operation" [4].
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12.3.3.3 Generator Damping

Internal combustion engines are often used to drive electrical generators, making this
a good place to discuss station-to-ground damping in generators. For a generator with
electromechanical conversion e¢ ciency �gen (typically �gen � 95%.), the electromechani-
cal losses (friction, windage, etc.) appear as station-to-ground damping with coe¢ cient
dgen

Ploss =
�
1� �gen

�
Pshaft in = (
 � dgen) � 
 = 
2 � dgen

dgen =

�
1� �gen

�

2

Pshaft in (12.41)

12.3.3.4 Electric Motor Damping

Although electric motors are rarely involved in parallel with internal combustion engines,
they are often used to power equipment similar to that driven by engines. For an electric
motor, typical e¢ ciency is around �mtr � 96%, and the electromechanical losses (friction,
windage, etc.) appear as a station to ground damper with coe¢ cient dmtr,

Ploss = (1� �mtr)Pelec in = 
 � (
 dgen) = dgen � 
2

dmtr =
(1� �mtr)


2
Pelec in (12.42)

The �nal example of this chapter describes a transient torsional vibration in an induction
motor driven system during startup. This is a situation where the motor provides both
positive and negative damping during di¤erent parts of the system acceleration. See
Section 12.7 and Appendix A5.1 for more information regarding motor torque curves
and associated damping.

12.3.4 Geared Systems

The use of gears is extremely common in mechanical systems, and their impact on tor-
sional vibration analysis must be considered. To this end, consider Figure 12.11 (a) where
a geared shaft system is shown. An equivalent single shaft system is shown in the Figure
12.11 (b), but how is this equivalent system developed?

In the two shaft system, the station rotations are all denoted by �i. The gear pair are J31
and J32; with tooth numbers n1 and n2, respectively. Assuming completely rigid gears,
the gear pair imposes a kinematic constraint between the two shaft rotations such that

n1�31 = n2�32 (12.43)
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Figure 12.11: (a) Geared Shaft System, and (b) Equivalent Single Shaft System

because the pitch radii are proportional to the tooth numbers.

The analysis begins by writing the kinetic and strain energy expressions in the original
coordinates, �i

T =
1

2

�
J1 _�

2

1 + J2 _�
2

2 + J31 _�
2

31 + J32 _�
2

32 + J4 _�
2

4

�
=
1

2

(
J1 _�

2

1 + J2 _�
2

2 +
_�
2

3

"
J31 + J32

�
n1
n2

�2#
+ J4 _�

2

4

)

=
1

2

(
J1 _�

2

1 + J2 _�
2

2 +
_�
2

3

"
J31 + J32

�
n1
n2

�2#
+ J4

�
n1
n2

�2
_�
2

4

)
=
1

2

n
J1 _�

2

1 + J2 _�
2

2 + J�3
_�
2

3 + J�4
_�
2

4

o
(12.44)

V =
1

2

�
K1 (�2 � �1)

2 +K2 (�31 � �2)
2 +K3 (�4 � �32)

2�
=
1

2

(
K1 (�2 � �1)

2 +K2 (�3 � �2)
2 +K3

�
�4 � �3

�
n1
n2

��2)

=
1

2

"
K1 (�2 � �1)

2 +K2 (�3 � �2)
2 +K3

�
n1
n2

�2
(�4 � �3)

2

#
=
1

2

�
K1 (�2 � �1)

2 +K2 (�3 � �2)
2 +K�

3 (�4 � �3)
2� (12.45)
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where the new angular variables, �i, are de�ned as

�1 = �1 �3 = �31

�2 = �2 �4 =
n2
n1
�4

and the new, equivalent single shaft system inertia and sti¤ness values are

J1 = J1 K1 = K1

J2 = J2 K2 = K2

J�3 = J31 + J32

�
n1
n2

�2
K�
3 = K3

�
n1
n2

�2
J�4 = J4

�
n1
n2

�2
It is apparent that the �nal forms for the kinetic and potential energy functions, equations
(12.44) and (12.45), describe exactly the system shown in Figure 12.11 (b). The e¤ect of
changing the variables as shown is to reduce the two shaft system to a single shaft system.
Note that the parameters of the second shaft of the original system are multiplied by the
square of the ratio of the tooth numbers in both instances. After this change of variables,
every thing said about a single shaft system applies directly to the two shaft system.

12.3.5 Excitations

Excitations for torsional vibration may be broadly classi�ed into two categories:

1. Start-up transients such as the torque required to begin rotation on a previously
stopped machine, or the change in driving torque required when the load torque
changes.

2. Periodic torque irregularities that continue through out the period of machine op-
eration.

For most machinery that runs for extended time periods, the �rst is rarely a matter of
engineering concern, but the second is far more important. This is because the underlying
concern that motivates interest in torsional vibrations is usually fatigue. Events that
happen only a few times cause relatively little fatigue damage. It is events that occur
once per shaft revolution on a machine that runs day and night for months or even years
that are cause for concern; these can rapidly accumulate a large number of fatigue cycle
and result in failure.
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In machinery driven by internal combustion engines (Diesel or gasoline), the pulsating
torque applied to the crankshaft due to both combustion in the cylinder and inertial
reactions in the slider-crank mechanism is a major exciter of torsional vibrations. In
a steam or gas turbine, the �ow interruptions that happen every time a rotor blade
and stator blade pass causes torque pulsations, but these are usually small. Motion
irregularities associated with imperfect gearing can also drive torsional vibrations. In the
category of start-up transients, the torque developed in large synchronous motors during
start-up is highly oscillatory and can be damaging.

Returning speci�cally to the pulsating torques acting on the crankshaft of an internal
combustion engine, note �rst that in Appendix 5.2 there is a discussion of the ther-
modynamic cycle for the engine. Cylinder pressure modeling is discussed there, with a
means provided to compute the cylinder pressure at every crank position. With that as
background, the virtual work of the cylinder gas pressure and the resulting shaft torque
are

�WCylPress = �P (�)AP �x
= �P (�)APKx (�) �� (12.46)

TCylPress (�) = �P (�)APKx (�) (12.47)

where P (�) is the net pressure acting on the piston (upper and lower faces combined),
and AP is the piston area.

There is a second e¤ect that acts as a periodic torque on the crank due to the centripetal
terms; this is evident below when the equations of motion are assembled, speci�cally
equation (12.55). Typical gas pressure torque and the centripetal term are shown sepa-
rately and in combination in Figure 12.12 for a two stroke cycle.

In Figure 12.12, the gas pressure torque is shown in broken line, the centripetal term is
shown in dotted line, and the combined e¤ects are shown in solid line. Note the negative
torque on the crank as the piston moves toward the head, compressing the charge. This
is followed by a very high positive torque pulse as the charge burns, producing high
pressure in the cylinder.

Figure 12.12 is drawn for a two stroke engine cycle, for which both excitations have crank
period 2�: If a four stroke engine were involved, the full thermodynamic period would
be 4�. In either case, the combination of gas pressure torque and the centripetal term is
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Figure 12.12: Gas Pressure Torque and Centripetal Term, Shown Separately and Com-
bined

periodic and can be expanded in a �nite Fourier series1 of the form

f (�;
) = �C (�) 
2 � P (�)APKx (�)

= ao +
X
n=1

�
an cos

�
2n�

NS

�
+ bn sin

�
2n�

NS

��
(12.48)

where, NS = 2 for a two stroke cycle or NS = 4 for a four stroke cycle. Note that f (�;
)
depends on both the crank angle, �, and the nominal crank speed, 
. This is due to
the 
�dependence of the centripetal term, and also due to the fact that the cylinder
pressure is dependent on operating speed and load. The Fourier series coe¢ cients, an
and bn, are determined numerically by direct application of the de�nitions:

ao (
) =
1

2�

Z +�

��
f (�;
) d� (12.49)

an (
) =
1

�

Z +�

��
f (�;
) cos (n�) d� (12.50)

bn (
) =
1

�

Z +�

��
f (�;
) sin (n�) d� (12.51)

1Fourier series is a mathematical method for the representation of periodic functions by an in�nite
series of sine and cosine functions. Interest here is in the truncated form of the series. It is a standard
topic in advanced calculus, and the interested reader is referred to any familiar textbook for such a
course.
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These integrals can all be evaluated numerically without di¢ culty by modern compu-
tational techniques. The results for the present case are given in nondimensional form
in Table 12.2. The series must converge (all �nite series converge), but an inspection of
the coe¢ cients shows that it does not converge very rapidly at all. This is why so many
terms are carried in the expansion. Calculations for other engines and di¤erent operating
conditions may require more or fewer terms.

Table 12.2 (a) Nondimensional Fourier Series

for Total Torque, T= (ApRPatm) for 
 = 2500 rpm

an bn

a (0) = +3:04470 � 100 � �

a (1) = +3:67816 � 100 b (1) = +6:68862 � 100

a (2) = +4:15868 � 10�1 b (2) = +6:47618 � 100

a (3) = �4:00345 � 10�1 b (3) = +4:26634 � 100

a (4) = �7:89819 � 10�1 b (4) = +3:33233 � 100

a (5) = �1:11116 � 100 b (5) = +2:06466 � 100

a (6) = �8:49334 � 10�1 b (6) = +1:19997 � 100

a (7) = �7:60042 � 10�1 b (7) = +8:79285 � 10�1

a (8) = �6:43551 � 10�1 b (8) = +3:75118 � 10�1

a (9) = �3:99197 � 10�1 b (9) = +2:14287 � 10�1

a (10) = �3:51232 � 10�1 b (10) = +1:61168 � 10�1

a (11) = �2:51886 � 10�1 b (11) = �5:14934 � 10�3

a (12) = �1:49366 � 10�1 b (12) = +2:38505 � 10�2
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Table 12.2 (b) Nondimensional Fourier Series

for Total Torque, T= (ApRPatm) for 
 = 2500 rpm

an bn

a (13) = �1:49592 � 10�1 b (13) = +1:15206 � 10�2

a (14) = �9:69245 � 10�2 b (14) = �3:70592 � 10�2

a (15) = �6:83833 � 10�2 b (15) = +3:80683 � 10�3

a (16) = �7:49451 � 10�2 b (16) = �7:62766 � 10�3

a (17) = �5:12380 � 10�2 b (17) = �1:82137 � 10�2

a (18) = �4:46764 � 10�2 b (18) = +1:34230 � 10�3

a (19) = �4:71629 � 10�2 b (19) = �3:33606 � 10�3

a (20) = �3:88422 � 10�2 b (20) = �7:56337 � 10�3

a (21) = �3:31780 � 10�2 b (21) = �5:89669 � 10�4

a (22) = �3:57665 � 10�2 b (22) = +2:41530 � 10�3

a (23) = �3:26035 � 10�2 b (23) = �6:29426 � 10�3

a (24) = �2:47499 � 10�2 b (25) = +4:01337 � 10�4

a (25) = �3:05082 � 10�2 b (25) = +4:50032 � 10�3

12.4 System Equations of Motion

There are three distinct approaches to developing the system equations of motion, each
with its own advantages. When properly applied, all are exactly equivalent, so it really
makes no di¤erence which method is used. The possibilities are these:

1. Application of the Lagrange form for the equations of motion is a rigorously correct
approach to developing the system equations of motion for a multidegree of freedom
torsional system. It is a bit cumbersome in terms of the required algebra, but
it correctly develops all of the necessary terms. Note particularly that, where a
slider-crank machine is involved, the Lagrange approach does correctly develop the
centripetal term, although it is somewhat round about in doing so.

2. Because of the close-coupled nature of the typical crankshaft connected engine, it
is feasible to consider each crank throw and the associated mechanism as a single
degree of freedom mechanism. This permits the application of Eksergian�s form
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for the equation of motion for each single crank. The station-to-station coupling
through the shaft must then be properly taken into account.

3. Newton�s Second Law can be used to formulate the equations of motion, although
this can be very awkward when slider-cranks are involved because all of the internal
forces remain in the formulation. This method is not recommended.

12.4.1 Nonlinear Equations of Motion

In order to be more speci�c, consider a rotating assembly comprised of many stations,
each station being one of three types. Assume that station type i represents a slider-crank
station with associated station-to-ground damping, station type j represents a rotating
mass such as a coupling or �ywheel that has no connection to ground, and station type k
represents a driven load with station-to-ground damping. No station-to-station damping
is included here. Then the equations of motion are generally of the form

I (�i) ��i + C (�i) _�
2

i + di _�i +Ki�1 (�i � �i�1) +Ki (�i � �i+1) = Qi

(12.52)

Jj��j +Kj�1 (�j � �j�1) +Kj (�j � �j+1) = 0

(12.53)

Jk��k + dk _�k +Kk�1 (�k � �k�1) +Kk (�k � �k+1) = Qk

(12.54)

The generalized forces for each type are;

� Station type i, the gas pressure torque term, TCylPress;

� Station type j there is no generalized force because this station does not couple to
the outside; and

� Station type k; the generalized force is whatever form is required to specify the
load torque.

The total number of equations of motion is always equal to the number of degrees of
freedom.

12.4.2 Linearization

As discussed previously, the variable generalized inertia in the �rst type of equation is
replaced with an average value, determined as described by Biezeno and Grammel [1].
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Thus I (�i) becomes simply Ji. The other step necessary for this approach to linearization
is to move the centripetal term to the right side of the equation of motion. All of this
has no impact on the second and third equation types above, but the equation of motion
for the slider-crank station becomes

Ji��i + di _�i +Ki�1 (�i � �i�1) +Ki (�i � �i+1) = TCylPress (�i)� C (�i) 
2 (12.55)

Return to an idea introduced at the end of the introductory example, the concept of the
rotating reference mark and the nominal angle turned by the shaft, 
t. The instantaneous
angular position of any station, �i (t) is

�i (t) = 
t+ #i (t) (12.56)

where


t is the gross (or average) angle turned by the shaft, and

#i (t) is the oscillatory rotational motion.

(The Greek letter # is known as script theta, an alternate form for the usual �.) The gross
angle is ever increasing with time, while the oscillatory term always remains small. In
places where the di¤erence of station angles (or their time derivatives) is important, such
as the sti¤ness torque term, the gross rotations cancel, leaving only the oscillatory terms.
On the other hand, in places where it is only the station rotation that is used, such as in
calculating the cylinder pressure torque or the centripetal coe¢ cient, the gross rotation
is dominant and the oscillatory terms are insigni�cant. For this reason, after dropping
small quantities, it is appropriate to write the equation of motion for the slider-crank
station as

Ji�#i + di _#i +Ki�1 (#i � #i�1) +Ki (#i � #i+1)

= PCylPress (
t)� C (
t) 
2 � di


= ao � di
 +
X
n=1

�
an cos

�
2n�

NS

�
+ bn sin

�
2n�

NS

��
(12.57)

In the last line, the cylinder pressure and the centripetal term are indicated as expanded
in a single Fourier series. With these modi�cations, the linearized equations of motion
(for any number of stations) are cast in matrix form as

dJc
n
�#
o
+ dDc

n
_#
o
+ [K] f#g = fT (
t)g (12.58)

where

Mechanics of Machines c 2019 Samuel Doughty



478 CHAPTER 12. TORSIONAL VIBRATIONS

dJc is the diagonal matrix of constant mass moment of inertia values

dDc is the diagonal matrix of station-to-ground damping coe¢ cients

[K] is the triple band diagonal matrix of sti¤ness values

fT (
t)g is the column vector of all terms required to make up the excitation.

The direct proportionality between the gross angle turned and time means that the right
side may be considered as a function of either the gross angle or the time.

12.4.3 Steady State Motion

It is necessary to say a few words about the meaning of the term steady state in the
machinery context. In the more common context of structural vibrations, the term
steady state implies that the displacements involved in the motion are periodic. In
view of the ever increasing rotation angles involved in a rotating machine experiencing
torsional vibration, such an understanding of steady state has no meaning. Instead, the
term must be re-interpreted.

In the machinery torsional vibration context, the angles do not repeat, but the angular
velocities do. Thus, in the machinery torsional context, the term steady state must be un-
derstood to imply periodicity in the angular velocities. This is a fundamental distinction,
and without it, the whole concept is meaningless.

If the system is periodic in the angular velocities, then the average value of the angular
velocity must be constant. Constant average angular velocity means that the average
torque on the system must be zero. Momentarily the system may experience either
positive or negative acceleration so long as the long term average is exactly zero. This
has implications for the balance of energy �owing into and out of the system.

Carefully considered, the statements above indicate that steady state motion involves a
combination of two types of motion:

1. Steady rotation, that is rotation at constant speed, and

2. Oscillatory motion, meaning rotation that �uctuates, sometimes positive and some-
times negative, but always about a zero average value.

These two cases are explored further below.
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12.4.3.1 Steady Twist

A part of the steady state motion occurs at constant speed, the nominal shaft speed 
. If
all parts of the system are rotating with the same speed, then the system is rotating like
a rigid body. However, this does not mean that it has the undeformed shape. Typically
it is a twisted form, because power is being transferred from the prime mover to the
driven load. Transmission of power requires both speed and torque, and transmission of
torque requires a twist to develop the necessary internal stresses to carry the torque. In
short then, this means that the twist in each section of the shaft must carry the torque
transferred through that section. But how much is that torque? Consider a simple
example.

Imagine an induction motor connected through a length of shafting to a fan with the
system running in steady state. Exactly how fast does it run, and how much power
is delivered to the fan? The motor has a known rated speed (the speed at which it
develops rated power), and the fan is rated for a speci�ed �ow rate and power at a given
speed. There are characteristic torque-speed curves available for both the motor and
the fan, and if they are overlaid, the running speed is, at least approximately, the speed
at which the fan torque demand curve intersects the motor torque-speed curve. This
is approximate only because system friction losses are not taken into account, but it
serves to demonstrate the idea of power balance. If the system is properly engineered,
the running speed is near the rated speed for both machines, but it is always the system
power �ow that determines the actual operating speed.

For a typical machinery torsional vibration analysis, the operating speed is speci�ed, but
the steady torques must still be exactly balanced. In words, this means that the input
torque from the prime mover (internal combustion engine, electric motor, etc.) must
be exactly equal to the sum of the load torque and all friction torques at the speci�ed
operating speed. Note that only station-to-ground damping torques needs to be taken
into account here; the static form of the rotating assembly means that station-to-station
damping has no e¤ect on the twisted shape.

If the shaft nominal speed is speci�ed, all of the station-to-ground torques can be imme-
diately evaluated. The zero net torque condition then provides a relation between the (1)
the input torque from the prime mover, (2) the output torque(s) to the driven load(s),
and (3) the total station-to-ground friction torques. For each speci�c problem, the ana-
lyst must choose a value for either the input or output torque, with the other determined
by the torque sum relation. With the shaft speed and input and output torques assigned,
the torque in each shaft segment is then readily evaluated. From this, the angle of twist
in each shaft segment is determined. This is described in more detail in connection with
the damped forced solution by the Holzer method and then demonstrated later in an
extended example problem in Section 12.5.

Mechanics of Machines c 2019 Samuel Doughty



480 CHAPTER 12. TORSIONAL VIBRATIONS

12.4.3.2 Oscillatory Motion

The remaining portion of the steady state motion is periodic with zero mean value. As
such, it is expanded in a Fourier series as

f#osc (t)g =
NordX
n=1

�
fAng cos

�
2n
t

NS

�
+ fBng sin

�
2n
t

NS

��
(12.59)

where

Nord is the maximum order number

NS is the number of strokes in the thermodynamic cycle.

The pair of solutions associated with each value of n result from excitation terms at that
same frequency. The methods from Chapter 11 are then applicable to the solution.

12.4.4 Pendulum Vibration Absorber

In the case study of Section 11.10, the Frahm vibration absorber was demonstrated. As
shown there, the motion of the primary mass can be completely stopped by proper tuning,
but proper tuning requires a speci�c combination of mass and sti¤ness for the absorber.
For rotating systems that operate at variable speeds, and for internal combustion engines
in particular, the required sti¤ness must vary with speed, a capability not found in typical
elastic systems. However, the e¤ective sti¤ness of a rotating pendulum proves to be ideal
as demonstrated below.

Figure 12.13: Pendulum Torsional Absorber
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Figure 12.13 shows a primary inertia (Jo) �tted with a pendulum torsional absorber.
The pendulum is considered as a point mass (Mp) with length b from the point of at-
tachment at radius a. With proper choices for a and b; this relatively small mass, Mp,
can dramatically alter the e¤ective inertia of the station as shown below. Attention here
is focused on this one station with the associated pendulum, a system with two degrees
of freedom (�; �), but it must be realized that this station also interacts with adjacent
stations through the shafting to either side.

Consider �rst the kinematics of the pendulum mass. The position equations are

xp = a cos � + b cos (� + �) (12.60)

yp = a sin � + b sin (� + �) (12.61)

The velocity components are obtained by di¤erentiation,

_xp = �a _� sin � � b
�
_� + _�

�
sin (� + �) (12.62)

_yp = a _� cos � + b
�
_� + _�

�
cos (� + �) (12.63)

Now write the system kinetic energy as

T = (1=2) Jo _�
2
+ (1=2)Mp

�
_x2p + _y2p

�
= (1=2) Jo _�

2
+ (1=2)Mpf

h
�a _� sin � � b

�
_� + _�

�
sin (� + �)

i2
+
h
a _� cos � + b

�
_� + _�

�
cos (� + �)

i2
g (12.64)

At this point, the stage is set for the development of the left side of the Lagrange equations
of motion. The process is lengthy but straight forward; the details are left as an exercise.

The virtual work expression is required in order to establish the generalized forces asso-
ciated with this system. Note that while there may well be an external torque applied
(such as through a slider-crank in an internal combustion engine), there are no external
forces acting directly on the pendulum since gravity is ignored. Thus the virtual work
expression is

�W = T ext�� (12.65)

From this, it is evident that the generalized forces are

Q� = T ext (12.66)

Q� = 0 (12.67)

The complete system equations of motion are then developed by the process of lineariza-
tion described previously. The Lagrange equation involving derivatives with respect to
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� and _� is of particular interest �rst. With the understanding that � is always small, it
is true that sin� � �, cos� � 1, and terms of higher order in � and _� may be dropped,
so the equation reduces to

�� (a+ b) + ��b+ _�
2
a� = 0 (12.68)

(The zero on the right is because Q� = 0.) Notice that this is a di¤erential equation
describing the pendulum motion in relation to the motion of the primary station.

In describing absorber operation, the focus is on steady state conditions are rather than
transient operation. As shown in previous sections, the externally exciting torque may
be a periodic function with terms at frequencies that are many multiples of the shaft
operating speed. For simplicity, and because the absorber is only e¤ective against a
single frequency, the exciting torque is here taken as

T ext (t) = Tn sin (n
t) (12.69)

where 
 is the shaft speed and n is a multiplier, usually an integer or half-integer. Recall
that, for linear systems such as considered here, the response to a sinusoid is a sinusoid
at the same frequency. If there is no damping, the response is in phase (or directly out of
phase) with the excitation. Thus the form assumed for the excitation implies that steady
state motions for the primary station and for the pendulum will be of the forms

� (t) = 
t+�sin (n
t) (12.70)

� (t) = � sin (n
t) (12.71)

where both � and � are always small. When these form are substituted back into the
reduced equation of motion, equation (12.68), and again dropping terms of higher order
in small quantities, the result can be solved for � in terms of �

� = �
n2 (a+ b)

a� n2b
(12.72)

This provides the amplitude of the pendulum motion, relative to the primary station, in
terms of the amplitude of motion at the primary station. This is a very important result;
notice what it says about the possibility of making � very large by the choice of a and b.

Now, return to the equation of motion for the primary mass, the Lagrange equation based
on derivatives with respect to � and _�. After linearization similar to that done for the
��equation, the equation of motion is�

Jo +Mp (a+ b)2
�
�� +Mpb (a+ b) �� = T ext (12.73)

The �rst term suggest that the pendulum acts as simply clamped to the primary station
in the fully extended position, but further exploration is required. When the motions are
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again assumed sinusoidal at frequency n
, the station equation of motion is

�n2
2
"
Jo +Mp

a (a+ b)2

a� n2b

#
� = Tn (12.74)

This last expression, equation (12.74) is solvable for the amplitude of motion of the
primary mass at the frequency n
 only.

Look at the possibilities presented by the pendulum absorber, depending on the choices
for a and b:

1. If the a and b are such that a = n2b ; the e¤ect is to make the pendulum appear to
the overall system at the frequency n
 as an in�nite inertia. This must completely
stop motion at this frequency at the primary station at the expense of violent
motion of the pendulum.

2. If a > n2b, the pendulum appears to the remainder of the system like a large
positive inertia added to the primary station.

3. If a < n2b, the pendulum appears to the rest of the system like a large negative
inertia added to the primary station inertia.

Consider an example for which the order of concern is n = 5 with a = 50mm. The system
is then tuned to completely stop motion at that frequency when b = a=n2 = 50=52 = 2:0
mm. (Such a short pendulum length may present problems in itself, but that is not the
focus of this example). With the parameters �xed, a = 50 mm and b = 2 mm, then
consider what happens for n = 4 and n = 6. At n = 4, the factor a � n2b = 50 � 42 � 2
= 18:0 appears in the denominator. At n = 6, the factor a� n2b = 50� 62 � 2 = �22:0
appears in the denominator. Since the actual excitation, in most cases, includes all orders,
all three of these cases are included. Thus the single pendulum will a¤ect the system
steady state response in di¤erent ways, depending upon which excitation order is being
considered. In order to block motion in several orders at a particular station, several
pendula can be located at that station. The overall e¤ect can be quite complicated.

12.4.5 Systems With Many Degrees of Freedom

By this point, the reader should be concerned about more complicated systems, rotating
machinery systems with many degrees of freedom. The modal method of Chapter 11
seems to o¤er a solution approach, but with many degrees of freedom, this could get
very complicated. Such systems have characteristic polynomials of very high degree, and
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while there is always the zero root pair, the degree of the remaining polynomial remains
very large. How are such systems to be analyzed?

To gain a greater appreciation for the nature of the problem, consider the following Figure
12.14 that shows a torsional schematic for an actual small, portable, two cylinder diesel
engine driven generator.

Figure 12.14: Torsional Schematic for Two Cylinder Diesel Generator Set

Note that there are seven stations, indicating seven degrees of freedom. These compo-
nents are as follows:

1. Front Pulley �This pulley powers a belt driving the cooling fan, water pump, and
perhaps a small alternator for battery charging.

2. Gear Train �The gear train drives the cam shaft and the fuel injection system.

3. Crank Throw �This is the �rst crank station, representing the slider-crank mech-
anism for the �rst cylinder.

4. Crank Throw � This is the second crank station, representing the slider-crank
mechanism for the second cylinder.

5. Flywheel �Note the �ywheel mass moment of inertia in comparison to others in
the system.

6. Generator Rotor �This is the main generator rotor that carries the rotating �eld
winding.

7. Exciter Rotor � This is the rotor of a small permanent magnet generator that
generates DC power for the main �eld winding.

For even this relatively simple machine, the characteristic polynomial is of degree seven in
!2n. Then think about a large engine-generator set with a V-type twenty cylinder engine
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with many details (fan, water pump, oil pump, cam shaft drive, supercharger, etc.) to
be modelled. Detailed torsional models as large as 250 stations are required for major
machinery trains. Such detailed models are created for very expensive machines to be
built and operated at great expense and risk. How can they be analyzed for torsional
natural frequencies and other signi�cant torsional motion aspects?

Consider a brief digression to look at the history of this problem. In the early history
of mankind, all work was done by human e¤ort. This was then supplemented by the
use of animal power (horses, oxen, etc.). Eventually water power and wind power were
incorporated. With all of these power sources, movement remained relatively slow. This
situation began to change in late 17th century Europe with the application of steam power.
Initially speeds remained quite low, but it was not long before they began to increase.
With increasing speeds, there were many industrial accidents. Some were things like
boiler explosions, but there were also unexplained machines wrecks. In these latter, it
seemed that when certain natural speed limits were exceeded, the machines would simply
vibrate wildly and self-destruct. Of course, in retrospect, it is evident that the machines
were being pushed to approach a resonance condition in which vibration grows rapidly
until something breaks.

There are two primary modes of vibration for any machine: (1) torsional vibration, such
as that being discussed here, and (2) lateral vibration. Lateral vibration is associated
with motion perpendicular to a shaft axis of rotation. It transmits great oscillating
forces to the bearings which in turn cause the machine structure and supports to vibrate.
Human beings usually sense lateral vibration simply by feel; they become aware of the
shaking. In contrast, torsional vibration is usually not felt at all, and people rarely sense
it until there is a failure. The major exception to this last statement occurs when there
is a gear set involved which causes the torsional motion to drive lateral vibration that
can be detected.

There was little progress in understanding torsional resonance until the early 20th century.
The tachometers of German U-boats examined after WW I were marked with red zones,
speed ranges where the engine must not be permitted to operate for any extended time
period; these evidently marked torsional critical speeds. Evidently the engines were able
to pass through these zones, provided they accelerated through rapidly, but they must
not be permitted to dwell at those speeds. Shortly after WW I, in 1921, Heinrich Holzer
published the �rst solid mathematical analysis of torsional vibrations [5]. In that book, he
showed a tabular calculation that could predict the critical speeds (natural frequencies)
of rotating machinery, and also how to calculate the forced response. Holzer�s original
work was in tabular form for hand calculation, but it has since been cast in matrix form
by others. It remains signi�cant to the present day because (1) it is applicable to both
free and forced vibration, (2) it can readily include viscous damping, and (3) it is easily
adapted to computer implementation.

With the linearized equations of motion in hand, consider the means available for solving
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these equations. There are three major possibilities: (1) simulation, (2) direct eigenso-
lution and modal analysis, and (3) the Holzer technique. The �rst two are presented
in Chapters 7, 8, and 11. The Holzer technique is developed in the next section, and
demonstrated in the �nal example of this chapter.

12.5 Holzer Response Calculations

Holzer presented an approach applicable to both the free and forced torsional analysis of
machine trains. The inclusion of viscous damping does not signi�cantly complicate the
forced vibration analysis, which is an added bene�t. There is some di¤erence between
the free and forced analyses, with the forced analysis conceptually more involved.

12.5.1 Holzer Free Vibration Analysis

In the form presented in this section, the Holzer method is applicable only to free vibration
(a more general form, applicable to the damped, forced problem is presented in the
following section). In this formulation, the Holzer calculation is a process for determining
the natural frequencies of a close-coupled chain such is found in many machinery trains.
(Close coupled means that each element is connected only to its nearest neighbors to
either side. This concept was previously introduced in Section 8.6.1. It should be kept
in mind that close-coupling always implies a triple band diagonal sti¤ness matrix.) The
necessary equations are derived below, with the associated �gures as needed. A schematic
for the system under consideration is shown in Figure 12.15.

Figure 12.15: N-Station Rotating System

Note at this point that there is no torque to the left of station 1 and no torque to the
right of station N ; these are the free ends of the system. These two observations are
the essential boundary conditions that determine the natural frequencies of the system as
shown below.
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In Figure 12.16, the system is shown broken in three places, to create two free body
diagrams. On the left, isolating the �rst rotor, and several stations to the right, where
the ith shaft segment and the (i+ 1)th rotor are isolated.

Figure 12.16: Free Body Diagrams for Stations 1 and i+ 1

Looking at the typical station, i+ 1, and the shaft to the left of it, it is evident that

Ti = Ki (�i+1 � �i) (12.75)

Ji+1��i+1 = Ti+1 � Ti (12.76)

The �rst of these can be solved for �i+1 in terms of �i and Ti; while the second is solved
for Ti+1 in terms of �i and Ti, with the assumption that all motion is sinusoidal in time
at frequency 
:

�i+1 = �i +
1

Ki

Ti (12.77)

Ti+1 = Ti � 
2Ji+1�i+1
=
�
1� 
2Ji+1=Ki

�
Ti � 
2Ji+1�i (12.78)

These two results are cast in what is called transfer matrix form,8<: �i+1

Ti+1

9=;
R

=

24 1 1
Ki

�
2Ji+1 1� 
2Ji+1=Ki

358<: �i

Ti

9=;
R

(12.79)

The subscripts i and i + 1 denote the station numbers involved while the superscript R
is a reminder that these are values to the right side of each station. The torque to the
right of the last station is often called the residual, a name that indicates that this is a
quantity to be driven to zero. Using this matrix equation, if �i and TRi are known, then
the calculation of those same quantities at the next station is easily accomplished to give
�i+1 and TRi+1.
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The only question remaining is how to start the process, to obtain the �rst station vector,
col
�
�1; T

R
1

�
. Referring back to the image on the left side of Figure 12.15, consider the

free body diagram for the �rst station. Note that there is no shaft extending to the left,
and hence no torque applied to the left side of the �rst station. For this station,
the applicable equations are

�1 = �1 (12.80)

J1��1 = T1 (12.81)

where the �rst equation, �1 = �1, simply means that �1 has whatever value is assigned
for it; it is an arbitrary choice. The �rst station vector can be readily constructed from
these equations as 8<: �1

T1

9=;
R

= �1

8<: 1

�
2J1

9=; (12.82)

The usual practice is to take �1 = 1:0; however any nonzero constant will work just as
well. From this point forward, assume that �1 = 1:0. The application of these equations
is as follows:

1. Assume a value for the frequency, 
, that is thought to be below the natural
frequency, and calculate the station rotations and right side torques for the entire
train by repeated application of the equations above (this is well suited to computer
implementation);

2. If the residual is zero, then the assumed value for 
 is in fact a natural frequency
!n because all the boundary conditions are satis�ed; this rarely happens. If the
residual is nonzero, make note of the sign of the residual and repeat step 1 above
for a greater value of 
. This process is continued until there is a change
in the sign of the residual;

3. When the residual changes sign, this indicates that the last frequency step has
crossed one or more natural frequencies. If this happens on the jth trial value for
frequency, then there are one or more natural frequencies in the interval [
j�1;
j] :
The root is then said to be bracketed, so go to step 4 below.

4. With the root bracketed, all that remains is to re�ne the bracket to whatever
degree is required. This is usually done using the method of bisection or by linear
interpolation.

5. With the root re�ned to the required degree, the rotations calculated for that �nal,
re�ned natural frequency estimate are the components of the eigenvector for that
mode.

This calculation is demonstrated in an example later in this chapter.
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12.5.1.1 Why Does the Holzer Calculation Work?

A reader may inquire just why the Holzer calculation described above produces the system
natural frequencies. What does this sequence of matrix multiplications to evaluate a
residual torque have to do with �nding the roots of the characteristic equation?

Consider a rotating system consisting of a shaft in bearings with several mounted inertias
(stations). It has been established, both in this and the previous chapters that the free
vibration of an elastic system occurs at the system natural frequencies. It is important
to note that the phrase at the system natural frequencies is actual saying that free
vibration is at, and only at, the system natural frequencies. It does not include
motion at any frequencies other than the system natural frequencies, !n, where n =
0; 1; 2; : : :.

Now it is also true that systems can be forced to vibrate at any frequency. The
key word there is forced, as opposed to free, vibrations. Suppose a particular system is
observed to be vibrating at a frequency 
 6= !n. Then it must immediately be concluded
that an external agent is driving the system at the frequency 
; this cannot be a free
vibration. In the Holzer calculation, the initial torque is speci�ed to be zero to the left
of the �rst station. The calculation process leads to an evaluation of the residual torque,
the torque that must be present on the second free end of the shaft to cause the system
to vibrate at the assumed frequency. If, and only if, the residual torque happens to be
zero, then (1) the motion is a free vibration, and (2) the frequency of motion is a natural
frequency.

The Holzer calculation is a method for evaluating the residual torque, which is equivalent
to evaluating a polynomial expression in
. The Holzer calculation evaluates a polynomial
of the form

Tresid (
) = c0 + c1
 + c2

2 + � � �+ cm


m

= CH (
� r1) (
� r2) (� � � ) (
� rm) (12.83)

where the r1; r2; : : : rm are the values of 
 for which Tresid is zero. Now return to the
process for evaluating the characteristic polynomial (which is the result of expanding the
characteristic determinant). The value of the characteristic polynomial is P ,

P (
) = CC (
� !1) (
� !2) (� � � ) (
� !m) (12.84)

The polynomials P (
) and Tresid (
) are of the same degree, and they have the same
roots (remember, Tresid (
) = 0 at 
 = !n which is the necessary condition for a free
vibration), so they are essentially the same polynomial, with the exception of the constant
scale factors CH and CC , which have no e¤ect on the root locations. This is why the
Holzer calculation, focused on �nding the frequency value associated with zero residual
torque, is e¤ectively a method for �nding the roots of the characteristic polynomial.
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12.5.2 Damped Forced Analysis

To obtain the maximum information about the system response requires that a forced re-
sponse calculation be made. Only the steady state solution is of interest; it is understood
that the transient solution disappears from the motion rather rapidly. In engine driven
systems, damping plays a major role in limiting the torsional vibration response, so it is
included in the formulation given here. If damping is to be omitted, it is only necessary
to set all of the damping coe¢ cients to zero, but this does not change the nature of the
calculation at all.

The forced Holzer calculation is limited to periodic excitations, so it is here assumed that
the equations of motion can be written in terms of a Fourier series with vector coe¢ cients:

dJc
n
��
o
+ ([C] + dDc)

n
_�
o
+ [K] f�g

= faog � 
 fdg

+
X
n=1

�
fang cos

�
2n
t

NS

�
+ fbng sin

�
2n
t

NS

��
(12.85)

where

dJc is a diagonal matrix of mass moment of inertia values;

[C] is a triple band diagonal matrix of station-to-station damping coe¢ cients;

dDc is a diagonal matrix of station-to-ground damping coe¢ cients;

[K] is a triple band diagonal matrix of sti¤ness values;

fang is a vector of torque cosine coe¢ cients;

fbng is a vector of torque sine coe¢ cients;

faog is a vector of constant torque terms;

fdg is a vector of the station-to-ground damping coe¢ cients.

The right side consists of two constant vectors and also of many vectors with sinusoidal
time dependence. This form is chosen with the implicit understanding that one or more
slider-crank machines are involved, and that NS is the number of strokes in the thermo-
dynamic cycle. Separate solutions are required for (1) the constant vector, and (2) each
pair of sinusoidal vectors.

Consider for a moment the right side vector faog : This vector consists of all the externally
applied steady torques acting on the system, both driving and driven. In the typical
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situation, one of the �rst entries is the driving torque from the prime mover (TPM) and
the one of the last entries is the load torque from the driven load (�TL). If the prime
mover is a multicylinder engine, then there are several driving torques, one for each crank
station in the engine. These torques, and those arising from station-to-ground damping,
are the only steady torques that act on the system.

At every station, the complete rotation consists of several terms, one of which is always
the rotation of the reference mark. Thus for the steady forced response, the complete
rotation vector, f� (t)g, is written as

f� (t)g = 
t

8>>>>>><>>>>>>:

1

1

1
...

9>>>>>>=>>>>>>;
+

8>>>>>><>>>>>>:

0

��2
��3
...

9>>>>>>=>>>>>>;
+

NX
n=1

fAng cos
�
2n
t

NS

�
+ fBng sin

�
2n
t

NS

�
(12.86)

The �rst term is the steady rotation of the entire system with the rotating reference
mark. The second term describes the static twists required to transmit the steady torque
required at each shaft section. The �rst two terms are comprised entirely of constants,
and often called the static solution. The remaining terms, those in the summation, are
called the dynamic response.

12.5.2.1 Static Solution

After the transient solution is decayed to zero, the particular solution that remains is
non-oscillatory; it is simply a twisted form rotating at the nominal shaft speed 
:

f�staticg = 
t

8>>>>>><>>>>>>:

1

1

1
...

9>>>>>>=>>>>>>;
+

8>>>>>><>>>>>>:

0

��2
��3
...

9>>>>>>=>>>>>>;
(12.87)

It is important to understand what is being said here about the nature of the steady
solution. In particular, note that

1. All stations have the same speed, 
; there are no angular accelerations associated
with this part of the solution.
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2. For a system comprised of Nsta, there are really only Nsta�1 angular displacement
variables to be determined, the steady twist angles �2, �3; : : :.

The �rst point means that there is no dynamic twisting (only steady twist), and hence no
possibility for fatigue damage except as the result of a nonzero mean stress superimposed
on the oscillatory stresses. As indicated, in the form for the static solution, there is
nothing unknown about the steady position of the �rst station in the static solution.
This leaves only the twist angles for the remaining stations to be determined.

When the assumed solution form is substituted and the equations rearranged, the result
is

[K]

8>>>>>><>>>>>>:

0

�2

�3
...

9>>>>>>=>>>>>>;
=

8>>>>>><>>>>>>:

TPM � d1


�d2

...

�TL � d3


9>>>>>>=>>>>>>;
(12.88)

If the prime mover steady torque is assumed known, this is a system Nsta equations
with unknowns including the load torque and the Nsta � 1 angles �2; �3; : : :. If the load
torque is assumed to be speci�ed, then the prime mover torque becomes one of the Nsta

unknowns. Note that this equation cannot be solved by simply inverting the sti¤ness
matrix [K] because it is singular. Even so, the system is solvable algebraically for the
unknowns indicated.

12.5.2.2 Dynamic Solution

Recall the way steady state solutions were obtained in Chapter 11 for sinusoidal excita-
tion terms; a similar process is used here. The solution for a typical pair of excitation
terms is developed in some detail, and then the complete set of solutions is indicated by
summation.

For the forced solution, including excitation torques and the possibility of damping, the
Holzer transfer relations are developed a second time with those additional considerations
included. For that purpose consider Figure 12.17.

Figure 12.17 (a) shows a shaft segment that has both sti¤ness (ki) and viscous damping
(ci); the same total torque, Ti, acts on both ends of the shaft. On the right, Figure
12.17 (b), the typical inertia has station�to�ground viscous damping, indicated by the
coe¢ cient di+1, and there is also the external torque TEi+1 (t) acting on the station.
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Figure 12.17: Typical Damped Shaft Segment and Station

12.5.2.3 Shaft Equations

Consider �rst the shaft segment from station i to station i+ 1 as shown in Figure 12.17
(a). The governing equations for this shaft segment are often called �eld equations. This
shaft is characterized by the sti¤ness ki and the station�to�station damping coe¢ cient
ci. The internal torque in this shaft is Ti,

Ti = ki (�i+1 � �i) + ci

�
_�i+1 � _�i

�
(12.89)

All variables are assumed to have sinusoidal time dependence at frequency n
, so that

Ti = TiC cos (n
t) + TiS sin (n
t) (12.90)

�i = �iC cos (n
t) + �iS sin (n
t) (12.91)

�i+1 = �i+1C cos (n
t) + �i+1S sin (n
t) (12.92)

When these forms are substituted into the torque relation for the shaft, the cosine and
sine terms separate to give two relations:

TiC = ki (�i+1C � �iC ) + n
ci (�i+1S � �iS) (12.93)

TiS = ki (�i+1S � �iS)� n
ci (�i+1C � �iC ) (12.94)

Considering for present TiC , TiS , �iC , and �iS as known values, the next step is to deter-
mine �i+1C and �i+1S . Equations (12.93) and (12.94) are re�arranged to read24 ki n
ci

�n
ci ki

358<: �i+1C

�i+1S

9=; =

24 ki n
ci

�n
ci ki

358<: �iC

�iS

9=;+
8<: TiC

TiS

9=; (12.95)
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Solving for the �i+1 components gives8<: �i+1C

�i+1S

9=; =

8<: �iC

�iS

9=;+ 1

Det1

24 ki �n
ci
n
ci ki

358<: TiC

TiS

9=; (12.96)

where Det1 = k2i + n2
2c2i . Finally, separating these two equations gives

�i+1C = �iC +
1

Det1
(kiTiC � n
ciTiS) (12.97)

�i+1S = �iS +
1

Det1
(kiTiS + n
ciTiC ) (12.98)

This completes the development of the transfer relation for this shaft segment.

12.5.2.4 Station Equations

The second part, Figure 12.17 (b), shows the i + 1th station, having mass moment of
inertia Ji+1, angular displacement �i+1, station�to�ground damping di+1, and an external
torque TEi+1. The relations governing this element are often called point relations in the
literature. The equation of motion for this station is

Ji+1��i+1 = TEi+1 + Ti+1 � Ti � di+1 _�i+1 (12.99)

This equation is solved for the internal torque to the right of the station,

Ti+1 = Ji+1��i+1 + Ti + di+1 _�i+1 � TEi+1 (12.100)

As before, all quantities are sinusoidal in time, so that the equation separates into two
equations, one in cosine terms and the second in sine terms. The �nal result is

Ti+1C = �n2
2Ji+1�i+1C + TiC + n
di+1�i+1S � TEi+1C (12.101)

Ti+1S = �n2
2Ji+1�i+1S + TiS � n
di+1�i+1C � TEi+1S (12.102)

Summary of Shaft and Station Relations

Det1 = k2i + n2
2ci (12.103)

�i+1C = �iC +
1

Det1
(kiTiC � n
ciTiS) (12.104)

�i+1S = �iS +
1

Det1
(kiTiS + n
ciTiC ) (12.105)

Ti+1C = �n2
2Ji+1�i+1C + TiC + n
di+1�i+1S � TEi+1C (12.106)

Ti+1S = �n2
2Ji+1�i+1S + TiS � n
di+1�i+1C � TEi+1S (12.107)
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In application, starting with values for �iC , �iS , TiC , and TiS , the �rst two equations are
used to evaluate �i+1C and �i+1S . Then these values are used in the last two equations
to evaluate Ti+1C and Ti+1S . In this way the Holzer calculation is propagated down the
length of the machine train.

A simple subroutine for implementing the Holzer process for a forced, damped solution is
shown below. Note that the �rst station requires separate handling for reasons presented
in the discussion following the code.

SUB HOLZER

! Holzer calculation routine
! nord = n-order, 1,2,...NNord
! n = station number, 1,2, ... NNsta
! Values of rc(1) and rs(1) must be previously assigned
! tc,ts = cosine & sine components of shaft internal torque
! rc,rs = cosine & sine components of station rotations
! Tec,Tes = cosine & sine components of external torque on station
! First Station ...
tc(1)=-Tec(1)+nord*Omega*DD(1)*rs(1)-(nord*Omega)^2*JJ(1)*rc(1)
ts(1)=-Tes(1)-nord*Omega*DD(1)*rc(1)-(nord*Omega)^2*JJ(1)*rs(1)
! All Other Stations ...
FOR n=2 to NNsta

n1=n-1
det1=KK(n1)^2+(nord*Omega*CC(n1))^2
rc(n)=rc(n1)+(KK(n1)*tc(n1)-nord*Omega*CC(n1)*ts(n1))/det1
rs(n)=rs(n1)+(nord*Omega*CC(n1)*tc(n1)+KK(n1)*ts(n1))/det1
tc(n)=tc(n1)-Tec(n)+nord*Omega*DD(n)*rs(n)&

&-(nord*Omega)^2*JJ(n)*rc(n)
ts(n)=ts(n1)-Tes(n)-nord*Omega*DD(n)*rc(n)&

&-(nord*Omega)^2*JJ(n)*rs(n)
NEXT n

END SUB

12.5.2.5 Boundary Conditions

The boundary conditions of interest for machinery problems are that there is no shaft
torque to the left of the �rst station and no shaft torque to the right of the last station.
Consider the �rst station where there is no torque to the left of the station. The equation
of motion is

J1��1 = T1 + TE1 � d1 _�1 (12.108)
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After substitution of the harmonic forms and separation this becomes

T1C = �n2
2J1�1C + n
d1�1S � TE1C (12.109)

T1S = �n2
2J1�1S � n
d1�1C � TE1S (12.110)

The question that remains is how the initial values, �1C and �1S , are to be assigned.

The �rst boundary condition is immediately satis�ed in the way that equation (12.93)
is formulated because no torque from the left is included. The boundary condition that
remains to be satis�ed is the vanishing of the torque on the right side of the last station.
To that end, consider three cases:

1. �1C = 1:0 and �1S = 0:0 and with all externally applied torques set to zero. When
the Holzer calculation process is executed for the entire system with these starting
conditions, the residual torques are saved as TNC = bT1 and TNS = bT4.

2. �1C = 0:0 and �1S = 1:0 and with all externally applied torques set to zero. The
Holzer calculation is made a second time for the whole assembly, this time with
these revised starting conditions, and the residual torques saved as TNC = bT2 and
TNS =

bT5.
3. �1C = 0:0 and �1S = 0:0 and with all externally applied torques set to their actual
values. When the Holzer calculation is made the third time with these starting
values, the residual torques are saved as TNC = bT3 and TNS = bT6.

For any nonzero values of �1C and �1S and with the externally applied torques at their
actual values, the combined residual torque values are linear combinations of the residual
torques for each case, thus

TNC = �1C
bT1 + �1S

bT2 + bT3 (12.111)

TNS = �1C
bT4 + �1S

bT5 + bT6 (12.112)

The second boundary condition requirement is that the residual torques be zero, so that

0 = �1C
bT1 + �1S

bT2 + bT3 (12.113)

0 = �1C
bT4 + �1S

bT5 + bT6 (12.114)

This is a system of equations solvable for �1C and �1S . The solution is8<: �1C

�1S

9=; =
1

DetbT
24 �bT5 bT2bT4 �bT1

358<: bT3bT6
9=; (12.115)
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where DetbT = bT1 bT5 � bT2 bT4. This calculation gives the required values for the initial
angular displacements, and the actual angular displacement column can then be gener-
ated by applying the initial values thus determined simultaneously with the externally
applied torques. Note that this process requires a total of four applications of the Holzer
calculation to the system model for the complete process. A block of code implementing
these steps, including all four calls to subroutine Holzer, is shown below:

Code For Application of Forced, Damped Holzer Calculation

FOR nord=1 to NNord
MAT Tec=zer ! externally applied torque-cosine comp
MAT Tes=zer ! externally applied torque-sine comp
! ********* Case 1 **********
rc(1)=1
rs(1)=0
CALL HOLZER
T1=tc(NNsta)
T4=ts(NNsta)
! ********* Case 2 **********
rc(1)=0
rs(1)=1
CALL HOLZER
T2=tc(NNsta)
T5=ts(NNsta)
! ********* Case 3 **********
rc(1)=0
rs(1)=0
! Any external excitations (Tec,Tes) present should be evaluated here,
! such as excitations due to slider crank machines, etc.
Tec(1)=Tcoefa(nord)
Tes(1)=Tcoefb(nord)
CALL HOLZER
T3=tc(NNsta)
T6=ts(NNsta)
! Evaluate initial conditions
detT=T1*T5-T2*T4
rc(1)=(T2*T6-T3*T5)/detT
rs(1)=(T3*T4-T1*T6)/detT
PRINT "Computed initial values"
PRINT " rc(1) = ";rc(1);" radians"
PRINT " rs(1) = ";rs(1);" radians"
! ********* Case 4 **********
CALL HOLZER
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! uses rc(1) & rs(1) computed as above, with whatever
! external torques act as well to return actual dynamic shape
FOR jsta=1 to NNsta ! cos & sin coef for dynamic ang displ at each station

LET sc(nord,jsta)=rc(jsta)
LET ss(nord,jsta)=rs(jsta)

NEXT jsta
hd1$=" Station Angular Displacements"
hd2$=" No. Cos Coeff Sin Coeff Magnitude"
img$=" ## +#.#####^^^^+#.#####^^^^#.#####^^^^<##########"
PRINT hd1$
PRINT hd2$
FOR n=1 to NNsta ! output shape for this order

PRINT using img$: n,rc(n),rs(n),sqr(rc(n)^2+rs(n)^2)"
NEXT n

NEXT nord

In the code above,

nord = typical order number, n

NNord = maximum order number, Nord

jsta = a typical station number, j

NNsta = maximum station number, Nsta

rc(), rs() = cosine and sine rotation coe¢ cients (�jC ; �jS)

tc(), ts() = cosine and sine torque coe¢ cients (Ti+1C ; Ti+1S)

This completes the development of the Holzer forced response calculation. With this
technique, the forced response of models of essentially any size can be calculated with
modest computer resources. It remains a valuable engineering tool in the 21st century,
despite advances in other numerical approaches related to the eigenproblem and modal
analysis.

12.6 Three Station Example Problem

To demonstrate the Holzer forced response calculation, consider a three station example
consisting of a single cylinder internal combustion engine, a �ywheel, and a generator
load. While this is a relatively small system, it provides and opportunity to exercise all
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aspects of the Holzer solution. The detailed data for this system are given in Appendix
5.2.1., Tables A5.2, A5.3, and A5.4.

12.6.1 Model

The complete three station example system is shown in Figure 12.18, and includes:

(1) an internal combustion engine cylinder operating on a two stroke thermodynamic
cycle with variable e¤ective moment of inertia I (�1);

(2) a �ywheel with constant mass moment of inertia J2o;

(3) a passive load, the generator rotor with mass moment of inertia J3o that only absorbs
steady torque without developing any oscillatory torques.

Figure 12.18: System Pictorial & Schematic

There are three views in Figure 12.18:

(A) At the upper right, the main system pictorial side view showing all three components
much as they actually appear in section views;

(B) At the upper left, a pictorial detail of the engine cylinder (slider-crank) mechanism;

(C) At the lower right, the simple schematic representation used for torsional vibration
analysis.
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Note that, in (A), the inertia of the engine cylinder mechanism is denoted as I (�1), a
reminder that this is a variable inertia system. However, in (C), that same station is
identi�ed with J1, a constant mass moment of inertia. This approximation is accom-
plished using the average value calculation given in equation (12.26). The data for that
calculation are all listed in Table A5.2. This transformation from a variable inertia to a
�xed average value is one of the important insights in this example.

The primary components of the engine (the slider-crank mechanism) are shown in Fig-
ure 12.18 (A). The subscripts used are 1 for quantities related to the crank, 2 for the
connecting rod, and 3 for items related to the piston. All of the usual assumptions and
notations used regarding slider-crank mechanisms in Chapter 2 are assumed to apply
here. The crank rotation �1 describes the motion of all components in the slider-crank
mechanism through the appropriate kinematic relations. The �ywheel rotation is �2 and
the rotation of the load inertia is given by the angle �3. The three bearings play no role
other than supporting the system. The system physical data are summarized in Table
12.3, and the graphic results shown previously in Figures 12.4 and 12.12 are speci�c to
this example problem.

Table 12.3 Three Station System Parameters

USC Units SI Units

K12 = 2:1550 � 106 in-lb/rad 2:4348 � 105 N-m/rad

K23 = 1:2400 � 106 in-lb/rad 1:4010 � 105 N-m/rad

J1o = 0:0876605414 lb-s2-in 9:9043 � 10�3 kg-m2

J2o = 15:320 lb-s2-in 1:7131 kg-m2

J3o = 1:020 lb-s2-in 0:11524 kg-m2

d1 = 0:56333 in-lb-s 0:063647 N-m-s

d2 = 0:0 in-lb-s 0:0 N-m-s

d3 = 0:30160 in-lb-s 0:03475 N-m-s

N = 2500 rpm �! 
 = 261:79939 rad/s

12.6.2 Free Vibration Analysis - Holzer

In the search for the system natural frequencies using USC units, �rst assume a starting
frequency estimate 
 = 10 rad/s (this value is assumed only to make the calculations
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easy). Then for the �rst station, the station vector is8<: �1

T1

9=;
R

=

8<: 1

� (10)2 (0:0876605414)

9=; =

8<: 1

�8:76605414

9=; (12.116)

and for the second and third stations, the station vectors are8<: �2

T2

9=;
R

=

24 1 1
2:1550�106

�102 (15:320) 1� 102 15:320
2:1550�106

358<: 1

�8:76605414

9=;
=

8<: 0:99999593�1540:76

9=; (12.117)

8<: �3

T3

9=;
R

=

24 1 1
1:24�106

�102 (1:020) 1� 102 1:020
1:24�106

358<: 0:99999593�1540:76

9=;
=

8<: 0:99875

�1642:6

9=; (12.118)

Since the �nal torque is negative (�1642:6), it is evident that 
 = 10 rad/s is not a
system natural frequency. Further searching starting at 
 = 50 rad/s and increasing in
steps of �
 = 50 rad/s shows sign changes in the intervals shown in Table 12.4.

Table 12.4 Natural Frequencies for Three Station Example

Holzer Search Re�ned Natural

Results Frequency Estimate

rad/s


 = 1100 rad/s residual = �1256387:3


 = 1150 rad/s residual = +418202:24

9=; �! !1 � 1137:5133


 = 4950 rad/s residual = +64743506


 = 5000 rad/s residual = �83654251

9=; �! !2 � 4971:8142

These are close to the results found by solving for the roots of the characteristic poly-
nomial, but the agreement is not exact. This is due to the fact that only a single step
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of root re�nement is used for this example. Here the root is estimated by linear inter-
polation between the two points where the sign change is noted. A more detailed and
exact re�nement is possible by simply using the Holzer process to repeatedly evaluate the
residual while projecting a new estimate at each iteration of the re�nement. It should
be emphasized that the same values for the natural frequencies are obtained (to within
rounding errors) no matter which system of units is used for the calculation.

12.6.3 Integrity Check

The running speed of the machine was given as N = 2500 rpm (
 = 261:79939 rad/s),
so there is a temptation to say that the two nonzero natural frequencies are well above
the running speed so there is no possibility for resonance. To say this is, however, short
sighted. Recall that the principal source of torsional excitation in this machine is an
engine operating on the pulsating torque from a slider-crank mechanism, and that there
are resultant excitations at integer multiples of the operating speed all the way to in�nity.
Can the system be resonant with any of these higher order excitations from the slider-
crank mechanism? (In the case of the two stroke cycle considered here, only integer
multiples of the crank speed need to be considered, that is, 1
; 2
; 3
, ... . For a four
stroke cycle, there are also half orders to be considered, so that the potentially resonant
speeds are 1

2

, 1
, 3

2

, 2
, ...) Thus the question comes down to, "Are any of the

multiples of the crank speed close to the natural frequencies?"

A search for excitation orders that coincide, either exactly or approximately, can be
readily added to the computer code for this calculation. Based on a window width of
10% of the calculated natural frequency, the results are as shown in Table 12.5.

Table 12.5 Excitation Order Coincidence Table

Natural Order Excitation Frequency

Frequency Number Frequency Ratio

rad/s rad/s

!1 = 1138:4816 4 � shaft speed = 1047.1976 4 � 
=!1 = 0:9199

!2 = 4972:3856 18 � shaft speed = 4712.3890 18 � 
=!2 = 0:9477

!2 = 4972:3856 19 � shaft speed = 4974.1884 19 � 
=!2 = 1:0004�

!2 = 4972:3856 20 � shaft speed = 5235.9878 20 � 
=!2 = 1:0530

� As the table shows, there is one extremely high risk situation associated

with the 19th order excitation that is almost exactly resonant.
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At this point, there are two questions that the analyst must ask:

(1) What is the strength of the 19th order excitation?

(2) What is the signi�cance of being even slightly o¤ the natural frequency?

The �rst question is fairly easy to address. Returning to the nondimensional Fourier
series coe¢ cient list, Table 12.2, it is clear that the two components of the 19th harmonic
torque are a (19) = �4:71629 � 10�2 and b (19) = �3:33606 � 10�3. For comparison, the
average torque is a (0) = +3:04470 � 100, so the 19th harmonic is considerably smaller,
but how to evaluate the signi�cance of this is not entirely clear at this point.

Regarding the second question, the answer depends to some extent as to how much
damping is thought to be in the system. If the system is extremely lightly damped, the
resonance peak will be very sharp and narrow, and an excitation a few percent away
from the natural frequency will have only a small e¤ect. On the other hand, if there
is more damping present, while the peak response is reduced, the width of the peak
is signi�cantly increased. This means that the same degree of separation between the
excitation and the natural frequency is less e¤ective in reducing the response.

Faced with the facts that the excitation is not negligible, the coincidence is almost exact,
and the amount of damping completely indeterminate, the conscientious analyst must
choose to go on to do a forced response calculation to determine just how signi�cant this
coincidence is in this case. Similar considerations apply to the other coincidences listed
in Table 12.5. If there were no signi�cant coincidences, the system would, in many cases,
be declared acceptable at this point without further analysis.

12.6.4 Damped Forced Response Calculation

The forced response solution is where the real information about dynamic stresses and
strains in the shafting is determined. It is vital to include all sources of excitation and
all damping in order to obtain a realistic result. This is the real basis for evaluating the
design integrity, but it requires additional e¤ort.

12.6.4.1 Static Solution

For this example, the steady term in the prime mover torque is the term ao in the the
Fourier series expansion of the engine torque. For this example, the engine power is
speci�ed, so that ao = 1136:1 in-lb = 128:36 N-m is a known value which leaves the load
torque and the static twists to be determined by the equilibrium conditions by applying
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equation (12.88).

[K]

8>>><>>>:
0

��2
��3

9>>>=>>>; =

8>>><>>>:
ao � d1


0

�TL � d3


9>>>=>>>; (12.119)

This is a system three equations in the three unknowns �2; �3; and TL. As noted previ-
ously, this cannot be solved by simply inverting the [K] matrix; [K] is singular and has
no inverse. Even so, the system of three equations is solvable for the indicated unknowns.
When the numbers are substituted and the solutions developed, the results are

�2 = 4:58778 � 10�4 rad (12.120)

�3 = 1:25609 � 10�3 rad (12.121)

TL = 909:707 in-lb = 102:78 N-m (12.122)

With these results, the generator output is

Pgen�out = 
TL = 2:3816 � 105 in-lb/s = 26:908 kW (12.123)

12.6.4.2 Dynamic Solution

When the Holzer calculation is applied to the three station example with damping and
the full 25 orders of excitation included, the results for the dynamic solution are as shown
in Table 12.6.
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Table 12.6 Holzer Results by Orders

Dynamic Angular Displacement (rad)

Order Station Cosine Sine Order Response

Number Number Coe¤ Coe¤ Magnitude

(A) (B) (C) (D) (E)

1 1 �5:82856 � 10�4 �1:11051 � 10�3 1:25417 � 10�3

2 �1:21821 � 10�3 �2:32152 � 10�3 2:62173 � 10�3

3 �1:29083 � 10�3 �2:46031 � 10�3 2:77838 � 10�3

2 1 +3:81604 � 10�5 +4:19546 � 10�4 4:21278 � 10�4

2 �3:42186 � 10�5 �3:75754 � 10�4 3:77309 � 10�4

3 �4:41027 � 10�5 �4:85174 � 10�4 4:8717 � 10�4

3 1 �5:66188 � 10�5 +4:63561 � 10�4 4:67005 � 10�4

2 +1:42199 � 10�5 �1:16535 � 10�4 1:17399 � 10�4

3 +2:89594 � 10�4 �2:36564 � 10�4 2:38330 � 10�4
...

...
...

...
...

Table 12.6 is the beginning of a tabulation that must run through all 25 orders, with the
number of each new order listed in turn in column (A). In column (B), for each order
number, the three station numbers are repeated, so that each station appears for each
order number.

The key results are in columns (C) and (D) where the cosine and sine coe¢ cients for
the response at each station are listed for each order. It is evident here that the process
produces the Fourier series coe¢ cients for the dynamic motion at each station for each
order. To be able to compare the response in di¤erent orders, it is useful to have the
magnitude of the response in each order, computed as the square root of the sum of the
squares of the coe¢ cients; this is tabulated in column (E).

Recall that the Fourier series coe¢ cients generated by the Holzer process give rise to a
series that is a function of time (alternatively, it may be considered a function of the
steadily rotating crank reference angle, 
t) of the form

�i (t) = �i1C cos (
t) + � � �+ �inC cos (n
t) + � � �
�i1S sin (
t) + � � �+ �inS sin (n
t) + � � � (12.124)

To visualize the dynamic motion of the station, it is necessary to sum this series for many
crank angles (or time values) and plot the resulting vibratory angular displacements. This
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result is shown in Figure 12.19.

Figure 12.19: Motion Reconstuction Using 25 Orders

The plot in Figure 12.19 represents one full crank revolution at nominal crank speed. The
jagged, highly oscillatory curve that tends to dominate the whole picture is the motion
of the engine crank, station 1. If the reader will count the peaks on this curve, it will
be observed that there are exactly 19 peaks. The large response at this high frequency
is the result of the coincidence of 19 times shaft speed with the second nonzero natural
frequency. The resulting resonance is very real, and is likely to result in the necessity
for redesign to remove the resonance condition or add su¢ cient damping to control the
motion. That all depends upon the �ndings of a torsional fatigue analysis, a topic beyond
the scope of the present work.

12.6.5 Length of the Series: A Caution

In any forced response calculation, there is always a question as to how many orders must
be included. In the example used here, 25 orders were used, which for many purposes is
more than adequate, but it is di¢ cult to be certain. While developing computer code, it
is common practice to make certain simpli�cations in order to assist development. These
simpli�cations include:

1. Omitting damping;

2. Using only a few excitation orders.
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Omitting damping allows the computed solutions to be easily checked by other means
such as the classical solution approach. Checking results is an important part of the
process, so this can be very useful.

Using only a few excitation orders makes the computer code execute faster, and this is
useful when it must be executed many times during code development. However, the
results can be misleading. Recall that the system integrity check, based solely on the
undamped free vibration analysis, pointed to a possible resonance condition, so it is no
surprise when that condition is actually found. However, during code development, many
solutions were generated based on only 10 orders. A typical result from such a computer
run is shown in Figure 12.20. The response for each station is identi�ed on the �gure.

Figure 12.20: Reconstruction Using Only 16 Orders (vertical scale is not the same as in
Figure 12.19.)

Note the di¤erence in appearance between this and Figure 12.19. One might easily think
that they represent two di¤erent physical systems, but the only actual di¤erence is the
number of excitation orders included in the computed solution. This makes it evident
that the full series must be used for valid �nal results.

12.7 Transient Torsional Instability Example

In the previous example, both the gas pressure excitation and the inertial reaction arising
from the variable system inertia play a major roles in the system response. The example
that follows is at the other extreme, a self-excited torsional vibration, with no obvious
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excitation at all. Even though no damping is explicitly included in the models that are
developed, damping, both positive and negative, plays a key role.

12.7.1 Background

The �rst super highway in America was the Pennsylvania Turnpike which was engineered
and built in the late 1930s and opened in October, 1940. The original section was 160
miles long and included several tunnels. Large exhaust fans were required to remove
noxious gases from the tunnels, and these fan systems were built by Westinghouse in
East Pittsburgh, PA. Each fan was provided with two drive motors (on a common shaft)
coupled through a speed reduction gear to a centrifugal blower. The two motors were
powered such that the more powerful motor was used to accelerate the fan while the less
powerful motor powered steady operation.

In testing, it was observed that there was a torsional instability, a self-excited torsional
vibration, that occurred during the acceleration phase and disappeared in steady oper-
ation. Because the fans would be re-started countless times, this was cause for concern
with respect to both fatigue and noise. The investigation into this problem and its reso-
lution are reported in a paper by Wahl and Fischer [6]. The present example is adapted
from that paper using system parameters that approximate those of the original systems.
A simpli�ed system sketch, showing only the acceleration motor is presented in Figure
12.21. While the original paper went into much detail regarding the design of appropri-
ate dampers, the purpose here is simply to explore the torsional instability. Wahl and
Fischer did not provide complete numerical data for this system, so it is necessary to �ll
in some of the gaps by reverse engineering. All the numerical values used are summarized
in a table at the end of this discussion.

The original paper by Wahl and Fischer does not go very far in terms of analysis, focusing
more on experimental measurement and the application of simple damped vibration
theory for the design of the dampers required. At the time of the original design work,
computation was entirely by pencil and paper, and the numerical solution of di¤erential
equations was in its infancy. Today, we have tools not available then, and they are useful
here.

The process of analysis that follows is rather lengthy, and it is useful to outline it in
advance. The major steps are these:

1. Mathematical models for the torques of both the induction motor and the fan;

2. SDOF model development and simulation results;

3. 2DOF model development and simulation results;
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Figure 12.21: Turnpike Exhaust Fan System

4. Transformation to an equivalent single shaft system;

5. Single shaft equivalent system eigensolution;

6. Modal transformation and simulation;

7. Twisting mode oscillations.

8. Conclusions

This example is particularly useful at this point because it illustrates several of the
multidegree of freedom analysis techniques previously discussed.

12.7.2 Torque Models

The problem at hand is a dynamical systems problem in that the whole system is ac-
celerating during the time interval of interest. It is also a vibrations problem because
the instability observed manifest itself as a torsional vibration. The key elements in this
study are the two torque sources that cause the systems motion.
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12.7.2.1 Motor Torque

In the Appendix Section 5.1, an approximate model for the torque-speed relation of a
three phase, squirrel cage induction motor is given. The Gärtner-Kloss relation [7] is

Tem (s) = 2Tm
�
1 + sme

As
�
=

�
sm
s
+

s

sm
+ 2sme

As

�
(12.125)

where

s = slip = (Nsynch �Nrpm) =Nsynch =
�
_�synch � _�

�
= _�synch

Nsynch = synchronous speed, rpm

Nrpm = motor speed, rpm

Tem = electromagnetic motor shaft torque (air-gap torque)

Tm = maximum torque (pull-out torque)

sm = slip at maximum torque (slip at pull-out torque)

A = Gärtner coe¢ cient, typically 1:3 � A � 3:0

The values of sm; Tm; and A are adjusted to approximate the particular motor of interest.

For later work, the derivative of this torque is also required. Note �rst that the Gärtner-
Kloss model expresses the electromagnetic torque as a function of only one variable, the
slip, s. Thus any required derivatives of Tem are obtained by applying the chain rule
for derivatives. While the resulting expression is unwieldy, it is not di¢ cult to evaluate
numerically.

12.7.2.2 Fan Torque

As a �rst approximation, for any aerodynamically loaded system such as a fan, the power
required varies as the third power of the rotational speed. For the case at hand, where
the fan rotation is described by �; this means that fan power may be expressed as

Pfan

�
_�
�
= B _�

3
(12.126)

where B is a suitable constant coe¢ cient. Since power is the product of torque and
rotational speed, the fan torque is

Tfan

�
_�
�
= B _�

��� _���� (12.127)
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where the absolute value is used to insure that this term always opposes the motion.

12.7.2.3 Torque Balance

While computational capability was lacking at the time of the Wahl and Fischer investi-
gation, they did have measured torque-speed curves for both the motor and the blower.
A typical pair of curves are shown in Figure 12.22 with both torques plotted as positive.
In this �gure, the fan torque is as seen at the motor shaft, decreased by the reduction
ratio to account for the increased speed at the motor shaft. The intersection of these two
curves at the motor rated speed Nrated = 1173:9 rpm shows that the motor and fan are
exactly matched for steady operation at rated power. The fact that the motor torque
curve is well above the fan curve for all speeds to the left of the intersection assures that
the motor is entirely capable of accelerating the fan up to speed.

Figure 12.22: Torque-Speed Curves for Motor & Fan at Motor Shaft Speed

12.7.3 Single Degree of Freedom Model

In all likelihood, Wahl and Fischer based their analysis on a single degree of freedom
model. It is certainly attractive as a starting point, and is investigated here for a simpli�ed
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understanding of the system response.

12.7.3.1 Kinematics & Kinetic Energy

For the single degree of freedom model, all system compliance is neglected and the shaft
rotation angle, �, serves as a suitable generalized coordinate. The undeformable nature
of the system implies two constraints:

� = R �  (12.128)

 = � (12.129)

where R is the dimensionless reduction ratio (R : 1).

The second constraint equation eliminates the shaft twist from the problem, leaving only
the kinetic energy to be considered:

T =
1

2
_�
2 �
Jmtr + Jpin + (Jgear + Jfan) =R

2
�

=
1

2
_�
2 �
J1 + Jfan=R

2
�

(12.130)

where J1 = Jmtr + Jpin + Jgear=R
2.

12.7.3.2 Generalized Force

The virtual work done on the system is

�W nc = Tem�� �B _�
��� _���� ��

= ��

�
Tem �

�
B

R3

�
_�
��� _����� (12.131)

12.7.3.3 SDOF Equation of Motion

The equation of motion for the SDOF model is simply

�
J1 + Jfan=R

2
�
�� = Tem �

�
B

R3

�
_�
��� _���� (12.132)
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Before leaving this equation, it is signi�cant to note that, although it is written in terms
of �� on the left side, it is actually only a �rst order di¤erential equation. To see this, let
_� = !, and then re-write the equation in the form

�
J1 + Jfan=R

2
�
_! = Tem (!)�

�
B

R3

�
! j!j (12.133)

Thus it is evident that the angle � does not enter into the equation at all, and the equation
is actually a �rst order equation in !.

12.7.3.4 SDOF Simulation Results

When this di¤erential equation is solved numerically, the results are as shown in the plot
of motor speed versus time, Figure 12.23. In most respects, the plot is unremarkable.
There is a smooth, almost linear, acceleration from zero up to a smooth transition near
the �nal operating speed. Notice that the �nal speed is reached after approximately 54
seconds (as read from the graph).

Figure 12.23: Motor Speed versus Time for SDOF Model
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12.7.4 Two Degree of Freedom Model

It is immediately evident that (1) the SDOF model does not fully capture the dynamics
of this system because the �exibility of the long drive shaft is omitted, and (2) a better
model must involve multiple degrees of freedom.

12.7.4.1 Coordinates

Figure 12.21 shows three angular coordinates (�; �;  ) which suggests that the system
model may require three degrees of freedom. However, for a simple model, it is su¢ cient
to treat the gearing as rigid and introduce the single constraint equation

� = R �  (12.134)

This same constraint appeared previously in the SDOF model, but the absence of a
second constraint enables this model to include the shaft �exibility. Thus, only two
degrees of freedom remain, suitably described by � and �.

12.7.4.2 Energy Expressions

The system kinetic energy is T ,

T =
1

2
(Jmtr + Jpin) _�

2
+
1

2
Jgear _ 

2
+
1

2
Jfan _�

2

=
1

2
_�
2 �
Jmtr + Jpin + Jgear=R

2
�
+
1

2
Jfan _�

2

=
1

2
J1 _�

2
+
1

2
J2 _�

2
(12.135)

where

Jmtr = motor mass moment of inertia

Jpin = pinion mass moment of inertia

Jgear = gear mass moment of inertia

with

J1 = Jmtr + Jpin + Jgear=R
2
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J2 = Jfan

The only potential energy involved is that of the twisted shaft,

V =
1

2
K (��  )2 =

1

2
K (�� �=R)2 (12.136)

12.7.4.3 Equations of Motion

The equations of motion are developed using the Lagrange formulation, again using the
motor torque and fan torque models discussed above. The Lagrange formulation begins
with the formation of various derivatives of the kinetic energy, potential energy, and
generalized force expressions. For this purpose, consider:

d

dt

@T

@ _�
= J1�� (12.137)

@V

@�
= �K

R
(�� �=R) (12.138)

d

dt

@T

@ _�
= J2�� (12.139)

@V

@�
= K (�� �=R) (12.140)

The general form for the Lagrange equation is

d

dt

@T

@ _q
� @T

@q
+
@V

@q
= Qnc (12.141)

For this particular system, the results are

J1�� �
K

R
(�� �=R) = Tem (s) (12.142)

J2��+K (�� �=R) = �Tfan
�
_�
�

(12.143)

For some purposes, it is desirable to look at this system of equations in matrix form as

24 J1 0

0 J2

358<: ��

��

9=;+
24 K=R2 �K=R

�K=R K

358<: �

�

9=; =

8<: Tem (s)

�Tfan
�
_�
�
9=; (12.144)
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Cast in the form most suited for programming, the equations of motion are

�� =
1

J1

�
�K

R2
� +

K

R
�+ Tem (s)

�
(12.145)

�� =
1

J2

�
K

R
� �K�� Tfan

�
_�
��

(12.146)

Note this is actually a fourth order system of equations, because �; _�; �; and _� all enter
into the equations. This is a direct consequence of taking the system �exibility into
account.

12.7.4.4 Two DOF Simulation Results

The result of numerically solving the coupled system is shown in Figure 12.24 where the
motor speed ( _�) is plotted as a function of time. The result is rather startling. Note
that Figure 12.24 shows both the curve of Figure 12.23 and also the motor shaft speed
plot resulting from the solution of the two degree of freedom problem. There are several
points worthy of comment:

� Over the time interval from about 5 seconds to 34 seconds, the models agree as
closely as the eye can see. They also agree on the �nal speed after the acceleration
is ended.

� In the time interval roughly 34 seconds up to 52 seconds, the motor speed from
the two degree of freedom model shows a wild, self-excited oscillation. This is a
torsional instability. The oscillation disappears, just as it began, for no obvious
reason.

� The motor shaft speed at 52 seconds from the second simulation is approximate
5 rad/s less than that for the single degree of freedom simulation. In the 2DOF
simulation, part of the energy put into the system is expended in the oscillatory
motion, rather than in the rigid body acceleration.

� The SDOF simulation shows the system reaching steady state about 4 seconds
sooner than the 2DOF simulation indicates. This is because of the waste of energy
in oscillations shown in the 2DOF model.

� The 2DOF simulation also shows some oscillation when the motor �rst starts,
between 0 and 5 seconds. More discussion about this is provided later.
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� The double amplitude of the major _� oscillation appears to be approximately 78:0
rad/s. Wahl and Fischer report a measured displacement (single) amplitude of
approximately 85o for the motor sta¤ oscillation with a natural frequency of 5:8 Hz
[6]. The amplitude values are not directly comparable since the values here are for
velocity oscillation amplitude while the Wahl and Fischer data is a displacement
amplitude. Both results indicate large amplitude motion, cause for considerable
concern.

� As shown later, and using the system data for this study, the undamped twisting
natural frequency is computed as !1 = 6:49 Hz. The natural frequency observed
in the simulation (based on counting a large number of peaks) is f = 6:47 Hz.
It is reasonable, therefore, to conclude that this is in fact simply a free vibration
response.

Figure 12.24: Combined Plots of Motor Speed versus Time for SDOF and 2DOF Models

12.7.5 Single Shaft Equivalent System

One of the techniques previously introduced to simplify dealing with geared systems is
the introduction of a single-shaft equivalent system (Section 12.3.4). This technique is
applied here with the objective of creating an equivalent single shaft system at motor
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speed. This is conceptually equivalent of mounting the blower directly on the end of the
motor shaft.

If the new variables for the equivalent system are denoted with Greek capitals, the trans-
formation is de�ned in this way:

� = � (12.147)

� = R� (12.148)

The transformed single shaft equivalent equations of motion are

R2J1 �� +K (�� �) = R2Tem (s) (12.149)

J2 �� +K (���) = �RTfan
�
_�
�

(12.150)

Casting these in matrix form gives24 R2J1 0

0 J2

358<: ��

��

9=;+K

24 1 �1

�1 1

358<: ��
9=; =

8<: R2Tem (s)

�RTfan
�
_�
�
9=; (12.151)

Notice that the inertia and sti¤ness matrices of the transformed system are symmetric;
this is an essential requirement for the later modal transformation. While there are no
identi�able damping terms included, this is, in fact, a damped system as demonstrated
below.

12.7.6 Eigensolutions for Single Shaft Equivalent

To look at the free vibration of the equivalent system, it is necessary to deal with the
eigenproblem. For this purpose, assume a homogeneous solution of the form col (�;�) =
fAg ej!t: The homogeneous solution must satisfy the equation24K � !2R2J1 �K

�K K � !2J2

35 fAg = f0g (12.152)

This leads to the characteristic equation,

0 = det

24K � !2R2J1 �K

�K K � !2J2

35
= �!2

�
KJ2 +KR2J1 �R2!2J1J2

�
(12.153)
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for which the roots are

!o = 0 (12.154)

!1 =
1

R

s
K (J2 +R2J1)

J1J2
(12.155)

The complete eigensolutions are as follows:

!o = 0 !1 =
1
R

q
K(J2+R2J1)

J1J2

fAog =

8<: 11
9=; fA1g =

8<: 1

�R2 J1
J2

9=;
(12.156)

12.7.7 Modal Transformation

The modal transformation for the equations of motion is based on the eigensolutions
found previously, starting with the previous equations of motion for the single shaft
equivalent system:24 R2J1 0

0 J2

358<: ��

��

9=;+K

24 1 �1

�1 1

358<: ��
9=; =

8<: R2Tem (s)

�RTfan
�
_�
�
9=;

[J ]
n
�X
o
+ [S] fXg = fTg (12.151)

where fXg = col (�;	) ; the single shaft equivalent variables, [J ] is the equivalent single
shaft inertia matrix, and [S] is the associated sti¤ness matrix.

12.7.7.1 Modal Equation Development

De�ne the modal response f�g such that fXg = [A] f�g ; which leads to the transformed
equations below:

[J ]
n
�X
o
+ [S] fXg = fTg

[J ] [A]
n
��
o
+ [S] [A] f�g = fTg

[A]T [J ] [A]
n
��
o
+ [A]T [S] [A] f�g = [A]T fTg

[M]
n
��
o
+ [K] f�g = fTg (12.157)
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Because the coe¢ cient matrices [M] and [K] are each diagonal, the equations have the
appearance of completely decoupling the two modes. In fact, this is not entirely true,
because they remain coupled through the right side torque components. The indicated
matrix products are:

[M] = [A]T [J ] [A] =

24 J1R2 + J2 0

0 R2 J1
J2
(J1R

2 + J2)

35 (12.158)

[S] = [A]T [S] [A] =

24 0 0

0 K
J22
(J1R

2 + J2)
2

35 (12.159)

fTg = [A]T fTg =

8<: R2Tem (s)�RTfan

�
_�
�

R2Tem (s) +R3 (J1=J2)Tfan

�
_�
�
9=; (12.160)

The modal equations of motion are readily assembled from the transformed terms in the
previous section. For the single shaft equivalent system, the modal equations of motion
are: �

J1R
2 + J2

�
��o = R2Tem (s)�RTfan

�
_�
�

(12.161)

R2
J1
J2

�
J1R

2 + J2
�
��1 +

K

J22

�
J1R

2 + J2
�2
�1 = R2Tem (s) +R3 (J1=J2)Tfan

�
_�
�
(12.162)

These equations are solved numerically with the initial conditions _�o (0) = �1 (0) =
_�1 (0) = 0. Only three initial conditions are provided because the �rst equation is only
a �rst order di¤erential equation in _�o and its derivative. Thus the numerical simulation
is reduced to solving only a total third order system.

Note that, for each equation, the right side is dependent on both s and _�; even though
the numerical solution generates _�o; �1 and _�1. To evaluate the right side at each time
step, it is necessary, therefore, to work back through the transformations to produce _�,
_� and �nally s:

_� = _�1 + _�o (12.163)

_� =
1

R
_�o �R

J1
J2
_�1 (12.164)

s =
�
_�synch � _�

�
= _�synch (12.165)

This is not di¢ cult to code in the computer simulation, but it is an important observation
for the discussion to follow regarding positive and negative damping.
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12.7.7.2 Modal Simulation Results

The results of simultaneously solving equations (12.161) and (12.162) are shown in the
upper part of Figure 12.25. It is immediately evident that the sum of these two curves,
_�o +

_�1, is the _� curve of Figure 12.24. The modal decomposition very neatly separates
the two aspects of the motion, so that each may be considered separately. All of the
features found in Figure 12.24 can be seen broken out separately in Figure 12.25.

Figure 12.25: Modal Simulation Results and Computed Damping Factor

12.7.8 Twisting Mode Oscillations

Before dealing speci�cally with the oscillations, it is well to exclude the rigid body mode
from consideration. As noted previously, although the rigid body equation of motion
appears to be second order, it is not. There are no terms that are functions of the
rotations, only the rotational velocities. Hence, it is only a �rst order equation, not
subject to the typical negative damping instability. All of the observed oscillation
is only in the twisting mode. The right side of the �rst equation shows the forward
torque of the motor in opposition to the fan torque, exactly as expected. But note, that
in the second equation, both terms act in the same sense.
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12.7.8.1 Negative Damping

Various authors have suggested that the positive slope of the induction motor torque-
speed curve, roughly in the range one half synchronous speed up to the point of maximum
torque, is a region of unstable operation [8; 9]. Unfortunately, they only o¤er vague,
non-rigorous mathematical support for these assertions. The intent here is to provide
something more de�nite.

Consider again the twisting equation of motion,

R2
J1
J2

�
J1R

2 + J2
�
��1 +

K

J22

�
J1R

2 + J2
�2
�1 = R2Tem (s) +R3 (J1=J2)Tfan

�
_�
�
(12.162)

The left side is recognized as a typical undamped oscillator. The objective here is to
focus on the right side of this equation, so de�ne TRHS

TRHS = R2Tem (s) +R3 (J1=J2)Tfan

�
_�
�

(12.166)

Suppose that, at a particular instant, the solution has the speci�c values
�
�
o
, �

1
, _�

o
, _�

1

�
.

In order to to project the solution to a nearby state
�
�o; �1;

_�o;
_�1

�
; consider a Taylor

series expansion in the two variables _�o and _�1;

TRHS

�
_�o; _�1

�
= TRHS

�
_�
o
; _�
1

�
+
�
_�
o
� _�o

� @TRHS
@ _�o

����
( _�o; _�1)

+
�
_�
1
� _�1

� @TRHS
@ _�1

����
( _�o; _�1)

+ � � �

= TRHS

�
_�
o
; _�
1

�
� _�

o

@TRHS

@ _�o

����
( _�o; _�1)

� _�
1

@TRHS

@ _�1

����
( _�o; _�1)

+_�o
@TRHS

@ _�o

����
( _�o; _�1)

+ _�1
@TRHS

@ _�1

����
( _�o; _�1)

+ � � � (12.167)

With a slight re-arrangement, the twisting mode equation, equation (12.162), now reads
as

R2
J1
J2

�
J1R

2 + J2
�
��1 � _�1

@TRHS

@ _�1

����
( _�o; _�1)

+
K

J22

�
J1R

2 + J2
�2
�1 (12.168)

= TRHS

�
_�
o
; _�
1

�
� _�

o

@TRHS

@ _�o

����
( _�o; _�1)

� _�
1

@TRHS

@ _�1

����
( _�o; _�1)

+ _�o
@TRHS

@ _�o

����
( _�o; _�1)

+ � � �

It is the last term, proportional to _�1; that has the potential to provide either positive
or negative damping. The required partial derivative, @TRHS=@ _�1, can be produced by
chain rule di¤erentiation.
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What is needed is a clear indicator of when the damping is positive and when it is
negative. This is most easily done by returning to the de�nition of the damping factor,
�, for a damped SDOF system. Equation (12.168) is of the typical second order form
that may be written as

��1 +
C
M11

_�1 +
S11
M11

�1 =
1

M11

T1 (12.169)

from which the damping factor is extracted as

�1 =
C

2!1M11

(12.170)

The damping factor varies with speed as the partial derivative terms change. Where � is
positive, the usual damped response applies. Where it is negative, the solution becomes
unstable and tends to grow with increasing time.

The e¤ective damping factor has been computed, moment by moment, and is plotted in
the lower part of Figure 12.25. It is negative from about 19 seconds up to 52 seconds,
roughly the same time interval where the major torsional instability is observed. It is
true that the positive slope of the induction motor torque-speed curve is a signi�cant
factor, but the slope of the load curve (in this case, the blower torque-speed curve) is
also important.

12.7.8.2 Start-up Oscillations

Wahl and Fischer measured oscillations during the �rst few seconds of the acceleration.
In Figure 12.24, there is an evident small oscillation during the �rst �ve seconds of the
acceleration. While it is known that induction motors do in fact produce oscillatory
torques during starting (see Appendix Section A5.1.4.5), these oscillatory torques are
only described in detailed electromagnetic models; this is beyond the capability of the
Gärtner-Kloss model. Even so, the torque-speed models used here support the observed
start-up oscillations.

The damping factor described in the previous section is positive over the time interval
zero to 19 seconds. As reported above in relation to the eigensolution, the undamped
natural frequency of this system is f1 = 6:490 Hz, and where the peak counting approach
is applied to the early part of the simulated acceleration, the oscillation frequency is
observed to be f = 6:486 Hz, based on the �rst three seconds. Thus it is apparent
that this early damped oscillation is simply the natural "ringing" response of a damped
oscillator following the application of an initial torque step when power is applied to
the system. It decays away because the e¤ective damping factor in that time interval is
positive.
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12.7.9 System Data

The intention here is to replicate the observations of Wahl and Fischer. Fortunately, their
original paper [1] provides a signi�cant amount of data, some of it expressed exactly and
some as only approximate. The approximate values are here taken as exact, and a certain
amount of reverse engineering is used to �ll in the remaining gaps.

Motor

f = 60 Hz line power frequency

Np = 6 number of poles

Nsynch = 1200 rpm synchronous speed

Prated = 40 Hp = 29827:996 W rated power

Nrated = 1173:936212 rpm rated speed

Trated = 242:6336092 N-m rated torque

srated = 0:02171982302 slip at rated speed

Tstart = 404:2145593 N-m starting torque

Tm = 592:8992401 N-m maximum torque

sm = 0:10933333333 slip at max torque

A = 4:126124876 Gärtner torque-speed parameter

Mechanical System

R = 7 gear reduction ratio

J1 = 1 kg-m2 assumed e¤ective value for station 1

J2 = 4410 � J1 consistent inertia for station 2

Pfan = 40 Hp = 29827:996 W fan rated power

Nfan rated = Nmotor rated=R = 167:71 rpm fan rated speed

B = 5:506794171 fan coe¢ cient

K = 200000 N-m/rad fan drive shaft sti¤ness
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12.8 Conclusion

The �nal example provides a basis for understanding of all of the transient torsional os-
cillations originally observed by Wahl and Fischer on the Pennsylvania Turnpike blowers.
The inclusion of torsional �exibility in the model is clearly essential for this demonstra-
tion. The changing signs on the damping factor is directly related to the varying slope of
the induction motor torque-speed curve, as well as the relative slope magnitudes of the
motor and fan torque-speed relations. Thus a quanti�able approach to predicting the
region of instability is presented.

The transformation to a single-shaft equivalent system is shown to be useful way to vi-
sualize the system and to prepare for the later modal analysis. The transformation to
modal coordinates accomplished the decoupling of the left sides of the two di¤erential
equations, but does not result in complete system decoupling. Despite that, the separa-
tion into rigid body and twisting motions greatly facilitates understanding of the nature
of the system motions. While this partial decoupling would be of only limited value if a
closed form solution were sought, it is su¢ cient to enable the computer modal simulation
to be conducted. The reader might be inclined to view this problem as having historical
interest only, but that is not the case. The literature shows several very similar studies
regarding torsional vibration problems in cooling tower fans used.

Understanding torsional vibration of machines remains a matter of vital importance in
the successful design of machinery of all sorts. It is one of the most broadly based
problems that mechanical engineers face, being intimately connected with kinematics,
dynamics of variable inertia systems, mechanics of materials, higher mathematics, and
thermodynamics. In this short introduction, only the surface elements are exposed, but
this is su¢ cient to provide a start for further study and application should the need arise
for the reader.

Understanding of the problem was delayed because of the computational complexity in-
volved for most real systems. Holzer�s original tabular calculation was a major break
through, but even so, it was a huge computing task. The availability of digital compu-
tation to do the massive amount of arithmetic involved has helped immeasurably. The
computational complexity is often given as an excuse for avoiding the subject in the class-
room, but this is no longer valid since the advent of the personal computer. The necessary
computational power is now within reach of every engineer, and this vital topic must be
well developed at the college level to enable the continued application of machines to do
man�s work.
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Problems

12-1 The �gure shows a simple shaft with �ve stations designated at diameter changes.
The shaft is made of steel ( = 76:5 kN/m3; G = 79:3 GPa), and all dimensions shown
are in millimeters. Be sure to note the �llet radii indicated for each diameter change.

(a) Lumping half of the segment mass moment of inertia at each end of the segment,
develop an inertia matrix, [M ], for the shaft alone;

(b) Taking proper account of the several �llet radii, develop a torsional sti¤ness matrix,
[K], for the shaft;

(c) What is the overall, end-to-end, sti¤ness of the shaft?

12-2 Table 12.2 (parts a and b) provide Fourier series for an internal combustion engine
torque curve, the graph of torque as a function of crank angle. Consider this data applied
to an engine cylinder for which the data is given below.

(a) Develop computer code to evaluate this function at every point throughout the crank
cycle in two degree increments. Take great care to correctly enter all of the data;

(b) Use this computer program to evaluate and plot the torque curve over a full cycle;

(c) What is the maximum torque, and at what crank angle does it occur, according to
the plot?

(d) What is the minimum torque, and at what crank angle does it occur, again according
to the plot?

Crank Radius R = 35 mm

Cylinder Bore Diam = 65 mm

12-3 The �gure shows a three station torsional model without damping. External ex-
citation torques are also indicated, but they are for a later problem and do not apply
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here.

(a) Write the system equations of motion in matrix form without external excitations;

(b) Develop the characteristic equation and numerically solve the polynomial for the
natural frequencies using the data below;

(c) Obtain the system eigenvectors, and normalize each to unit value for the �rst station.

J1 = 15 kg-m
2 J2 = 75 kg-m

2 J3 = 50 kg-m
2

K1 = 2:5 � 106 N-m K2 = 5:5 � 106 N-m

12-4 Consider again the same system studied in problem 12-3. The system parameters
given there are applicable to this problem as well.

(a) Develop computer code to implement the Holzer calculation of natural frequencies
and mode shapes;

(b) Employ that code to numerically determine the system natural frequencies and mode
shapes for the system;

(c) Compare the results with those obtained by directly solving the characteristic poly-
nomial (they should be quite close, but rarely are they exactly the same).

12-5 For the same system considered in problem 12-3, let the shaft speed be 
 = 439:8
rad/s, and assume that the unstrained system is rotating at constant speed 
 when
the following system of external torques are initiated: TE1 (t) = 8:856 � 104 (1� cos
t),
TE2 = 0; and TE3 (t) = �8:856 � 104, all in N-m units. For the questions below, use the
modal method of analysis. Where the mode vectors are used, normalize the �rst element
in each to 1.0.

(a) Calculate the steady twist of the system;
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(b) Second (�rst twisting) mode vibratory angular displacements at each station;

(c) Third (second twisting) mode vibratory angular displacements at each station.

(d) No damping is indicated in the problem statement, therefore whatever motion ensues
continues without decay. Knowing that a real system is intended, one for which there
must always be damping in reality, what terms are expected to decay and which are not?

12-6 Consider again the same system considered in problem 12-5, this time using the
Holzer forced response calculation.

(a) Does the Holzer forced response calculation provide the steady shaft twists? If not,
is there an alternate way to determine it? If either is true, evaluate them.

(b) Does the Holzer forced response calculation provide the uniform rotation terms?

(c) Does the Holzer calculation provide the response at the system natural frequencies?

(d) Compare the forced response values obtained by the Holzer calculation with those
from the modal analysis of problem 12-5.

12-7The e¤ects of two di¤erent types of damping are demonstrated here. Each step of the
analysis should be formulated in symbols before numbers substituted and the arithmetic
completed. Where numerical values are required, use the data tabulated below. While
working this problem, the reader should bear in mind what was learned in Chapters 10
and 11 regarding the signi�cance of (i) a zero root, and (ii) a complex root, and (iii) a
pure imaginary root.

(a) Formulate the system equations of motion in matrix form, �rst in full detail and then
rewritten in more compact form using the notations

dJc = diag (J1; J2)

[C] =

24 C �C

�C C

35
dDc = diag (D1; D2)

[K] =

24 K �K

�K K

35;
(b) Assume a solution of the form f�g = fAg e�t, and develop the characteristic equation
in detail;
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(c) Formulate and solve numerically for the � values for Case 1: [C] = dDc = [0];

(d) Formulate and solve numerically for the � values for Case 2: [C] 6= [0], dDc = [0];

(e) Formulate and solve numerically for the � values for Case 3: [C] = [0], dDc 6= [0];

(f) Formulate and solve numerically for the � values for Case 4: [C] 6= [0] ; dDc 6= [0];

(g) Accumulate all the results in a table with the following headings: column 1 is the
case number, column 2 is the condition description (what is zero), column 3 is the list of
root values, and column 4 is a brief comment about the nature of the motion;

(h) Based on what is observed in these solutions, extrapolate to make a general statement
about the e¤ects of the two types of damping.

J1 = 1 D1 = 0:05 K = 1000

J2 = 1:5 D2 = 0:05 C = 0:1

(Note that no units are given. It is to be assumed that they are in a consistent system
of units, either SI or USC.)

12-8 One of the application areas where torsional vibration is of great concern is the
driveline of a ship; a shaft failure at sea can be catastrophic. For this reason, ships
propulsion systems are always given a rigorous torsional analysis. The �gure shows
a ship�s drive line model with the engine at the left and the propeller at the right.
The parameter values used here are taken from a technical paper concerned with this
problem2.

(a) Calculate the three lowest twisting mode natural frequencies for this system, along
with the mode vectors for each (normalize the mode vectors to 1:0 at the �rst station;

2Murawski, L., "Some Aspects of Torsional Vibration Analysis Methods of Marine Power Transmis-
sion Systems," J. of Polish CIMAC, Vol. 7, No. 1, Gdansk, 2012, pp. 175-182.
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(b) Plot the mode shapes (mode vector value versus station number) for the �rst three
modes;

(c) How is the number of axis crossings related to the mode number?

Mass Moments of Inertia Shaft Sti¤ness Values

kg-m2 kg-m2

J1 = 2:2462 � 104 J7 = 1:1161 � 104

J2 = 1:1161 � 104 J8 = 4:8020 � 103

J3 = 1:1161 � 104 J9 = 6:3420 � 103

J4 = 1:1161 � 104 J10 = 4:4500 � 102

J5 = 1:1161 � 104 J11 = 7:7800 � 102

J6 = 1:1161 � 104 J12 = 8:4537 � 104

N-m/rad N-m/rad

K1 = 1:3120 � 109 K7 = 1:8800 � 109

K2 = 1:3720 � 109 K8 = 2:7400 � 109

K3 = 1:380 � 109 K9 = 1:1145 � 108

K4 = 1:3460 � 109 K10 = 1:08677 � 108

K5 = 1:3790 � 109 K11 = 1:29662 � 108

K6 = 1:4390 � 109

12-9 The �gure shows the system previously considered in problem 12-7 with the ad-
dition of a viscously coupled ring damper (Cd = 40; Jd = 0:3). The numerical data
given there apply for this problem as well. The damper ring is contained in a hol-
low cavity connected to the main shaft, and the space between the ring and hous-
ing is �lled with a viscous �uid. Assume that the external torques are of the forms
T1 (t) = a1o + a1n cos (n
t) + b1n sin (n
t) and T2 (t) = a2o + a2n cos (n
t) + b2n sin (n
t)
where station 1 is the load and station 2 is the prime mover. The nominal shaft speed is

 = 40 rad//s.

(a) Develop the system equations of motion in matrix form;

(b) Develop an expression for a2o in terms of a1o; D1; D2 and 
;

(c) Using the available numerical data, for steady state in the speci�c case where n = 1:
a1 = 0; a2 = 50; b1 = b2 = 0, determine:

(i) the motion amplitude at frequency 
 for each station, including the damper rotor;
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(ii) the slip amplitude in the damper (slip is the di¤erence in component speeds).

12-10 The �gure shows two primary stations, a slider-crank engine and a driven load.
The cylinder pressure force, A � P (
t), is considered as known in Fourier series form.

(a) Develop any kinematic analysis required for later use;

(b) Formulate the full, nonlinear system equations for this machine;

(c) Linearize the slider-crank portion using the method of Biezeno and Grammel as
described in the text. The crank motion is of the form � (t) = 
t + # (t) where 
 is a
relatively large value, and j# (t)j is always relatively small.;

(d) Determine the system twisting mode natural frequency.

Engine Data Other System Data

R = 50:8mm J1o = 0:0094 kg-m2 K = 2700 N-m/rad

L = 168:3 mm M2 = 0:8508 kg J2 = 2:6 kg-m2

u2c = 55:1 mm J2c = 0:0043 kg-m2

a = 46 mm M3 = 1:0143 kg

Power = 26:845196 MW Avg Torque = 106814 N-m Speed = 2400 rpm

12-11 The �gure shows a two station torsional system, with a pendulum absorber �tted
to station #1. The pendulum is to be considered as a point mass, Mp, with length b,
supported at a distance a o¤ the axis of rotation. There are external torques applied to
each station, and the interest is in the steady state response at each station. Most of the
system data is given below, but the user must determine one dimension.

(a) Ignoring the pendulum, determine the system twisting natural frequency;
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(b) Determine the pendulum length, b, such as to completely stop motion at station #1
for n = 3;

(c) Using the length b determined in part (b), determine the amplitude of the system
response at each station for orders n = 1; 2; 3; 4; 5; 6;

(d) Develop a computer plot for the system response at each station through one full
revolution.

J1 = 1:5 kg-m2 a = 165 mm Mp = 0:2 kg

J2 = 2:5 kg-m2 K = 10000 N-m/rad 
 = 35 rad/s

A1 = 110 N-m A3 = 195 N-m A5 = �135 N-m

B2 = 140 N-m B4 = 207 N-m B6 = 45 N-m

T e1 = A1 cos (
t) + A3 cos (3
t) + A5 cos (5
t)

T e2 = B2 sin (2
t) +B4 sin (4
t) +B6 sin (6
t)
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Appendix 1

Matrices

The ability to use matrix notation and to manipulate matrices is an essential skill for
many scienti�c endeavors, particularly including the kinematics, dynamics, and vibration
of machines. This short review is intended as an aid to those who have not seen this
material before or who have become rusty on its use.

A1.1 Matrix Notation

A matrix is a rectangular array of numbers. A typical matrix with r rows and c columns
may be denoted [A], and represents the following array:

[A] =

26666666664

A11 A12 A13 � � � A1c
A21 A22 A23 � � � A2c
A31 A32 A33 � � � A3c
...

...
...

...

Ar1 Ar2 Ar3 � � � Arc

37777777775
Note that the subscripts refer to the location of the element within the array. In general,
Aij denotes the element in row i and column j. The range of the row index (1 to r) is
the row dimension of the matrix. Similarly, the range of the column index (1 to c) is the
column dimension of the matrix. If r = c, the matrix is said to be square. There is no
requirement that a matrix be square, although many of interest are in fact square.

Two types of matrices are of particular interest: (1) square matrices, and (2) column (or
row) matrices. A column matrix consists of a single column of n numbers and is denoted
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by braces, f:g, such as

fV g =

8>>>>>>>>><>>>>>>>>>:

V1

V2

V3
...

Vn

9>>>>>>>>>=>>>>>>>>>;
This may be thought of as a single column of the general rectangular matrix form just
given above. Because there is only one column, there is no need for a column index and
the single index given serves to denote the row in which the element is located. The
dimensions of the preceding column matrix are (n� 1), which keeps the column matrix
in context as a special case of the rectangular matrix. A column matrix is often termed
a vector and, conversely, a vector is usually understood to mean a column matrix. If
there are only two or three elements, this may be considered to represent a physical
vector in two- or three-dimensional space. At other times, there will be more than three
elements, and the matrix may be considered as a vector in a space of higher dimensions.
To conserve space, it is common practice to write the elements on one line, with the
pre�x col, so that the preceding vector would be written as fV g = col (V1; V2; V3; : : : ; Vn).
The hybrid term column vector is used when it is necessary to distinguish it from the
row vector to be discussed shortly.

One of the common matrix operations used is the transpose. Applied to a rectangular
matrix, this operation consists of exchanging rows for columns. The result is that those
elements that were originally in the jth row of the original matrix are now found in the
jth column of the transposed matrix. The transpose of a matrix is denoted by the same
name as the original matrix with the addition of a superscript T . Thus, for the preceding
rectangular matrix, the transpose would be

[A]T =

26666666664

A11 A21 A31 � � � Ac1
A12 A22 A33 � � � Ac2
A13 A23 A33 � � � Ac3
...

...
...

...

A1r A2r A3r � � � Arc

37777777775

Note that the subscripts as used here are those of the original array. Thus, A23 from
the original [A] matrix is found in the transpose in the (3; 2) position. If the transpose
operation is applied to a column matrix, the result is to move the single column into
a single row. This is often called a row vector. The dimensions for the row vector are
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(1� n). For the preceding column matrix fV g, the transpose is

fV gT = (V1; V2; V3; : : : Vn)

A1.2 Matrix Addition and Subtraction

Addition and subtraction of two matrices are each de�ned to produce a new matrix,
the elements of which are the sums, or di¤erences, of corresponding elements in the two
original matrices. However, addition and subtraction can be de�ned only when the two
matrices have the same dimensions. If [A] and [B] are two rectangular matrices to be
added,

[A] =

26666664
A11 A12 A13 � � �

A21 A22 A23 � � �

A31 A32 A33 � � �
...

...
...
. . .

37777775 [B] =

26666664
B11 B12 B13 � � �

B21 B22 B23 � � �

B31 B32 B33 � � �
. . .

37777775
then the sum is [C]

[C] = [A] + [B] =

26666664
A11 +B11 A12 +B12 A13 +B13 � � �

A21 +B21 A22 +B22 A23 +B23 � � �

A31 +B31 A32 +B32 A33 +B33 � � �
...

...
...

. . .

37777775
Subtraction can be illustrated in a similar manner simply by changing the sign on the
second term of each element in [C]. If [A] and [B] are of dimension (r� c), then the sum
or di¤erence, [C], is also of dimension (r � c).

A1.3 Matrix Multiplication

The product of two matrices is another matrix, the elements of which are sums of products
of the elements of the two original matrices. Formally, if the matrices to be multiplied
are [A] = [Aij], (n1 � n2), and [B] = [Bjk] (n22� n3), the matrix product

[C] = [A] [B]

(n1 � n3) (n1 � n2) (n2 � n3)
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has, as the typical element of [C],

Cik =

j=n2X
j=1

AijBjk

Notice that the dimensions for each matrix are indicated in parentheses below the matrix
name in the displayed matrix product. The results matrix, [C], will be (n1 � n3), as
indicated there. An essential condition for the existence of the matrix product is also
indicated that the column dimension of the �rst factor must be the same value as the
row dimension of the second factor. In this illustration, this dimension is n2. The need
for this condition is seen in the expression for the typical term; if this condition is not
satis�ed, there will not be an equal number of Aij and Bjk factors to be multiplied
together. Furthermore, the matrix product [A][B] is, in general, not equal to the matrix
product [B][A], The order of the matrix factors is signi�cant and must be maintained.

For manual evaluation of matrix products, the following approach is useful. A speci�c
example serves to present the manual method. Consider the product of two matrices [A]
and [B]:

[C] = [A] [B]

To form the (i; j)th element of the product, the steps are as follows:

1. Locate the ith row of the �rst factor ([A]) and the jth column of the second factor
([B]);

2. Consider the ith row to be rotated 90 degrees clockwise and placed adjacent to the
elements of the jth column, forming three indicated products;

3. Sum the three indicated products and store the result in the (i; j)th position of the
result.

For the case i = 2; j = 1 just identi�ed, this produces

C21 = A21B11

+A22B21

+A23B31

At times, the transpose operation may be applied to an indicated matrix product. The
transpose of a product is the reversed product of the individual factors transposed:

([A] [B])T = [B]T [A]T

For the proof of this statement, consult any standard text on matrix theory.
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A1.4 Matrix Inversion

Addition, subtraction, and multiplication are each de�ned for both real numbers and
matrices. At this point the similarity ends because there is no division operation de�ned
for matrices. Instead, there is an operation known as inversion that produces a matrix
called the inverse of the original matrix. Inversion is only distantly related to the idea
of division, and the two must not be considered in any sense the same.

Before beginning the explanation of the matrix inverse, it is convenient to de�ne the
terms diagonal matrix and identity matrix. For a square matrix, the elements on the
diagonal from the upper left corner to the lower right corner make up what is called the
main diagonal. Some special matrices have all elements zero except for the elements on
the main diagonal. Such matrices are called diagonal matrices and are sometimes written
as

dDc = diag (D11; D22; D33; � � � )

where only the elements on the main diagonal are written out. One very important
diagonal matrix is the identity matrix, for which the elements on the main diagonal are
each 1:0. A typical identity matrix of dimensions (3� 3) is

dIc = diag (1; 1; 1) =

26664
1 0 0

0 1 0

0 0 1

37775

The symbol dIc is often used for the identity matrix, although it also has other meanings
such as the area or mass moment of inertia matrix. Care should be taken to make clear
what is meant in each case.

One important characteristic of the identity matrix is seen when it is multiplied with a
second matrix. The product is simply the second matrix; multiplication by the identity
matrix changes nothing at all. This is indicated by the following statement:

dIc [A] = [A] dIc = [A]

This is comparable to multiplying a scalar by the value 1:0.

If [A] is a square matrix for which [B] is the inverse, this relation is expressed as

[B] = [A]�1
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where the superscript �1 is reminiscent of the exponent �1 that is used to denote the
inverse of a scalar. Because [B] is the inverse of [A], this means that

[A][B] = [B][A] = dIc

Notice that the matrix product taken in either order, [A][B] or [B][A], results in the
identity matrix. This de�nes the inverse, [B], in terms of the result when [B] is multiplied
with [A]; it does not tell how to determine [B]. There are many methods to determine
the inverse of a matrix, and for these a suitable text on matrix algebra or numerical
methods should be consulted. Most commercial computer codes provide a subroutine for
matrix inversion, or equivalently, for the solution of a set of simultaneous linear algebraic
equations.

One of the major concerns in dealing with the inverse of a particular matrix is whether or
not an inverse actually exists for that matrix. To investigate, let [A] be a square matrix
for which [B] is postulated to be the inverse. The matrix [B] exists if, and only if, the
determinant of [A] is nonzero. Testing the value of the determinant of [A] becomes a
necessary part of assuring that subsequent analysis using [B] will in fact be valid.

There are occasions when the inverse of a matrix product is indicated. For further
analysis, this inverse can be replaced by the reversed product of the individual factor
inverses:

([A] [B]) = [B]�1 [A]�1

demonstrating a property much like the rule for the transpose of a product. The proof
of this relation is available in many texts on matrices.

A1.5 Solution of Linear Algebraic Equations

One application of the matrix inverse is the formal solution of a system of linear simul-
taneous algebraic equations. The system of N equations in N unknown variables, which
can be represented as

C11x1 + C12x2 + C13x3 + : : : = B1

C21x1 + C22x2 + C23x3 + : : : = B2

C31x1 + C32x2 + C33x3 + : : : = B3
...

can be written very compactly in matrix form as

[C]fxg = fBg
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where [C] is (N �N) while fxg and fBg are each (N � 1). The formal solution for this
system of equations is obtained by premultiplying by the inverse of [C] (this presumes
that such an inverse exists):

[C]�1 [C] fxg = [C]�1 fBg

or

fxg = [C]�1 fBg

This shows that the solution, fxg, is obtained from the product of the inverse of the
coe¢ cient matrix [C] with the column matrix of constants, fBg. This is entirely correct
and, from an analytic point of view, is the manner in which the solution is usually
indicated a matrix inversion followed by a matrix product.

From the numerical standpoint, this is not the best way to compute the solution, fxg. It
involves an unnecessary multiplication that slows the process and an unnecessary matrix
inversion with associated numerical round-o¤ errors. In writing computer programs to
solve a system of linear equations, the direct solution should always be preferred; the
inverse of the coe¢ cient matrix should be computed only when the inverse itself is re-
quired. That said, True BASIC provides an excellent matrix inversion routine but no
routine for the direct solution of a system of equations. Thus, if working in True BASIC,
the matrix inversion is the recommended way to approach such problems.

There are times when the system to be solved consists of rectangular arrays for both the
unknowns and the right side.

[C] [x] = [B]

(n� n) (n�m) (n�m)

Consider both [x] and [B] to be partitioned into columns:

[C] [x1jx2jx3j : : :] = [B1jB2jB3 � � � ]

Then, the vectors fx1g, fx2g, and so forth, are the solutions associated with the various
right-side vectors fB1g, fB2g, and so on, so that

[C] fxig = fBig

There will be m such solution vectors, each de�ning a column in the solution matrix [x].
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A1.6 Special Case: (2� 2) Matrix

In many of the examples of the analysis of machines, a (2� 2) matrix must be inverted
or a system of two simultaneous linear equations must be solved. These special solutions
are tabulated here for use when needed. They apply only for the inversion of a (2 � 2)
matrix or the solution of two simultaneous linear equations.

A1.6.1 Analytical Inverse for (2� 2) Matrix

Consider the (2� 2) matrix [C]:

[C] =

24 C1 C2
C3 C4

35

The determinant of [C] is det [C],

det(C) = C1C4 � C2C3

and the inverse of [C] is

[C]�1 =
1

det [C]

24 C4 �C2
�C3 C1

35

A1.6.2 Solution of Two Simultaneous Linear Equa-
tions

For the system of two linear equations,

24 C1 C2
C3 C4

358<: x1

x2

9=; =

8<: B1

B2

9=;
Mechanics of Machines c 2019 Samuel Doughty



A1.7. CLASSICAL EIGENVALUE PROBLEM 543

the solution is 8<: x1

x2

9=; =
1

det [C]

24 C4 �C2
�C3 C1

358<: B1

B2

9=;
=

1

det [C]

8<: C4B1 � C2B2

�C3B1 + C1B2

9=;
These special cases occur so often in this book that the reader may wish to simply commit
them to memory.

A1.7 Classical Eigenvalue Problem

This discussion is complementary to that presented in Section 11.4 because both look at
the eigenproblem. There the discussion is approached from a physical view point

, while here and in the next section, it is looked at from a more mathematical perspective.

One of the most common linear algebra problems is the matter of solving the equation

[W ] fxg = fBg

This is encountered countless times in this text, and usually presents no di¢ culty at all.
That is, it presents no di¢ culty provided fBg is not the zero vector. If in fact fBg = f0g,
then considering the system of equations as a transformation matrix [W ] operating on a
vector fxg, the equation says that [W ] transforms fxg into the zero vector, a singular
operation (one that cannot be reversed ).

Consider then the equation
[W ] fxg = f0g

There is always the trivial solution fxg = f0g, but that is of little interest. The real
question is, "when are there nontrivial solutions?" The answer is that nontrivial solutions
exist if and only if the determinant of [W ] is zero. Note that this does not say anything
about how to �nd the nontrivial solutions; it only gives the conditions under which they
exist.

All the above is by way of introduction to the classical eigenvalue problem, usually written
as

[A] fxg = � fxg
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or
([A]� � dIc) fxg = f0g

where

[A] is the matrix of interest, n� n

fxg is called the eigenvector, n� 1

� is the scalar eigenvalue

dIc is the diagonal identity matrix of the same order as [A] ; (n� n)

The German pre�x eigen- is usually translated as characteristic although the older word
in English was proper. The intent of the pre�x is to indicate that the result correctly
satis�es the characteristic equation. These proper solution elements exist only provided
that

det ([A]� � dIc) = 0

which is the de�ning relation, usually called the characteristic equation. When the deter-
minant is expanded, it is a polynomial of degree n, called the characteristic polynomial.
The number of eigenvalues and associated eigenvectors is equal to the order of the system;
n.

Example: Determine the eigenvalues of the following matrix:

[A] =

24 1 2
3 4

35
First the characteristic equation is written

0 = det ([A]� � dIc)

= det

24 1� � 2

3 4� �

35
= �2 � 5�� 2

=

�
��

�
5

2
+
1

2

p
33

���
��

�
5

2
� 1
2

p
33

��

Since the equation is satis�ed if either factor is zero, the eigenvalues are

�1 =
5

2
� 1
2

p
33 � �0:37228

�2 =
5

2
+
1

2

p
33 � 5: 3723
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Observe (without proof) several statements that are true in general for all matrices of
any order:

1. The product of the eigenvalues is det [A]; in this example, the determinant is �2:0;

2. The sum of the eigenvalues is the sum of main diagonal entries, called the trace; in
this example, tr [A] = 5;

3. A square matrix can be inverted if, and only if, none of its eigenvalues is zero.

With the eigenvalues in hand, the next question to address is the determination of the
associated eigenvectors. Let �n be the nth eigenvalues for a particular matrix. Then fxng
is an associated eigenvector if, and only if, it is true that

([A]� �n dIc) fxng = f0g

It should be noted that the eigenvector is not unique. Any nonzero constant multiplier
(including complex number multipliers) applied to an eigenvector produces an alternate
form of the same eigenvector. There are in�nitely many such multiples. This indicates
that eigenvectors may be correctly be scaled in any convenient manner.

Example: Continuing the example just above where the two eigenvalues for a matrix
[A] were determined, with that same matrix [A], assume that fxgj = col (a; b) is an
eigenvector associated with the eigenvalue �j. Then it is true that24 1� �j 2

3 4� �j

358<: aj

bj

9=; =

8<: 00
9=;

(1� �j) aj + 2bj = 0

3aj + (4� �j) bj = 0

For j = 1, the �rst eigenvalue is �1 � �0:37228, both equations produce the same result,
namely, b = 0:68615a. This means that one component of the eigenvector can be chosen
at will, and then the second must be in this proportion. Choose for this example a1 =
+1:0, which leads to b1 = 0:68615, which gives the eigenvector fxg1 = col (1:0; 0:68615)
associated with the �rst eigenvalue �1 � �0:37228.

For j = 2; the second eigenvalue is �2 � 5:3723; again both equations agree, b2 =
2:1862a2. It the �rst element of the second eigenvector is also chosen as +1:0, then the
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result is b2 = 2:1862. With this same scaling (choosing the �rst element as +1:0), the
associated eigenvector is fxg2 = col (1:0; 2:1862) for the eigenvalue �2 � 5:3723.

On re�ection, it should be evident that while there is nothing unduly complicated in the
theory presented here, the numerical work can be daunting for systems of high order.
For this reason, computer implementation is generally considered a necessity for systems
of any signi�cant size.

A1.8 Generalized Eigenproblem

The classical eigen problem is de�ned with respect to a single matrix (denoted above as
[A]), but in engineering applications, a similar problem often appears in terms of two
matrices in the form �

[K]� !2j dMc
�
fxgj = f0g

where

[K] = (n� n) sti¤ness matrix

dMc = (n� n) diagonal mass or inertia matrix

fxgj = jth (n� 1) eigenvector

!2j = jth eigenvalue

This is called the generalized eigenvalue problem. While there are evident similarities
with the classical form, there are signi�cant di¤erences as well. In general, the sti¤ness
matrix re�ects the connectivity of the system, and hence is not diagonal. The mass
matrix is diagonal when a lumped mass formulation is developed (as is done in this
book), although the reader should be aware that many �nite element programs use a
di¤erent, nondiagonal form called a consistent mass matrix ; the last is not discussed
further here.

There are two major options for dealing with the generalized eigenproblem. They are:

1. Find a way to convert it into the classical eigenproblem; such a process exists for
many cases; or

2. Deal directly with it as it stands.

Consider here the �rst option, to convert the problem into the classical eigenproblem
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form. The approach is based on the idea of �nding a matrix, [C] such that

dMc = [C]T [C]

where

1. dMc is diagonal, as supposed for all cases considered in this book;

2. [K] is positive de�nite.

Then the Cholesky matrix [C] is diagonal with the square roots of the diagonal elements
of dMc for its entries. Use this to replace dMc in the original expression to obtain�

[K]� !2 [C] [C]T
�
fxg = f0g

and then premultiply by [C]�1 to get

[C]�1 [K] fxg = !2 [C]�1 [C] [C]T fxg
= !2 [C]T fxg

De�ne a new eigenvector,
fXg = [C]T fxg

and substitute in terms of fXg to obtain

[C]�1 [K] [C]�T fXg = !2 fXg

If a matrix [A] is now de�ned such that [A] = [C]�1 [K] [C]�T , the problem is again in
the classical eigenproblem form,�

[A]� !2 dIc
�
fXg = f0g

This enables methods previously developed for the classical problem (such as the Jacobi
method) to be applied to the generalized problem. Note, however, that while the eigen-
value remains unchanged in the Choleski transformation, the eigenvector is transformed
and must be transformed back to solve the original problem. The inverse transformation
of the eigenvectors is accomplished by

fxg =
h
[C]T

i�1
fXg
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A1.9 Generalized Eigensolution Computer Code

The two section above discussed the Classical Eigenproblem and the Generalized Eigen-
problem, the latter in terms of converting the generalized problem into the classical
problem. Here the process is demonstrated in terms of a computer program that consists
of three steps:

1. Problem data input and calculation of the Choleski transformation matrix;

2. Iterative solution of the classical problem by Jacobi�s method;

3. Transformation of the modal matrix back to that of the original generalized prob-
lem.

The problem for this demonstration involves mass and sti¤ness matrices as follow:

dMc =

2666666
2 0 0

0 1 0

0 0 2:2

7777775

[K] =

26664
4:0 �1:0 0:0

1:0 2:0 �1:0

0:0 �1:0 4:1

37775
These matrices appear as DATA statements near the beginning of Program ChoJac.Tru
and they are echoed back as the �rst part of the output from the program. This is useful
in order to verify that the correct problem is solved. The �rst new results then follow, the
computed natural frequencies which are the square roots of the eigenvalues determined
by Subroutine Jacobi.Tru. This is then followed by (a) the modal matrix for the original
problem, (b) the modal mass matrix for the original problem, and (c) the modal sti¤ness
matrix for the original problem. The �nal output is a summary of the modal results for
the original problem and a statement regarding the diagonalization process. The �gure
on the next page is a screen capture of the results.

All of the matrices are printed in scienti�c notation, and this is particularly signi�cant
for the modal mass and sti¤ness matrices. Note that neither one is exactly diagonal,
but that both are very close to being diagonal, as indicated by the exponents on the
o¤-diagonal terms. This demonstrates the quality of the Jacobi iteration process. If the
o¤-diagonal terms are ever found to be signi�cant, then the process fails and must be
investigated further. The computer code for ChoJac.Tru is listed following the program
output.
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Computer Program ChoJac.Tru

! ChoJac.Tru
! Eigenproblem solution by Choleski transformation & Jacobi�s method
! Solution of Generalized Eigenproblem by ----
! (1) transforming the generalized problem to the classical problem
! by the Choleski transformation
! (2) solving the classical problem by Jacobi�s method
! (3) transforming back by the inverse Choleski transformation
! [C] is the Choleski transformation matrix
OPTION NOLET
OPTION BASE 1
SET WINDOW 1,2,3,4
DIM A(3,3),evect(3,3),AIK(3),eval(3),MM(3,3),KK(3,3),SS(3,3)
DIM C(3,3),Ci(3,3),Ct(3,3),order(3),cit(3,3)
DIM sc1(3,3),sc(3),omega(3),modal(3,3),x(3),mdiag(3),kdiag(3)
e1=0.1e-11
e2=0.1e-11
e3=0.1e-5
itmax=50
CLEAR
! Problem data
DATA 3 ! number of degrees of freedom
DATA 2, 1, 2.2 ! diag of mass matrix
DATA 4, -1, 0 ! stiffness matrix by rows
DATA -1, 2, -1
DATA 0, -1, 4.1
READ ndof
MAT c=zer
MAT ci=zer
MAT MM=zer
MAT KK=zer
FOR i=1 to ndof ! read the diag of the mass matrix

READ MM(i,i)
NEXT i
FOR i=1 to ndof ! read the stiffness matrix by rows

FOR j=1 to ndof
READ KK(i,j)

NEXT j
NEXT i
img$=" +#.#######^^^^+#.#######^^^^+#.#######^^^^"
PRINT
PRINT
PRINT " Mass Matrix"

Mechanics of Machines c 2019 Samuel Doughty



A1.9. GENERALIZED EIGENSOLUTION COMPUTER CODE 551

MAT PRINT using img$: MM
PRINT " Stiffness Matrix"
MAT PRINT using img$: KK
! Calculate the Choleski transformation
MAT c=zer
MAT ci=zer
FOR i=1 to ndof

c(i,i)=sqr(MM(i,i))
ci(i,i)=1/c(i,i)

NEXT i
MAT cit=trn(ci)
MAT sc1=ci*KK
MAT A=sc1*ci
! Send only the upper triangle for [A] to Jacobi!
FOR i=2 to ndof ! null the lower triangle

FOR j=1 to i-1
A(i,j)=0

NEXT j
NEXT i

CALL jacobi

FOR i=1 to ndof
ww=sqr(eval(i)) ! compute frequencies from omega^2 values
omega(i)=ww
PRINT " omega";i;" = ",ww;" rad/s"

NEXT i
MAT modal=cit*modal ! inverse Choleski transformation
FOR j=1 to ndof ! normalize first element to 1.0

FOR i=ndof to 1 step -1
modal(i,j)=modal(i,j)/modal(1,j)

NEXT i
NEXT j
PRINT
PRINT
PRINT " Modal Matrix"
MAT PRINT using img$: modal
! Calculate modal mass matrix = [A]t[M][A]
MAT sc1=trn(modal)
MAT sc1=sc1*MM
MAT sc1=sc1*modal
PRINT
PRINT
PRINT " Modal Mass Matrix"
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MAT PRINT using img$: sc1
mmod=0
FOR i=1 to ndof

mdiag(i)=sc1(i,i) ! diag element of modal mass matrix
FOR j=1 to ndof

! mmod is max off diag of modal mass matrix
IF i<>j then mmod=max(mmod,abs(sc1(i,j)))

NEXT j
NEXT i
! Calc Modal Stiff Matrix = [A]t[K][A]
MAT sc1=trn(modal)
MAT sc1=sc1*KK
MAT sc1=sc1*modal
PRINT " Modal Stiffness Matrix"
MAT PRINT using img$: sc1
kmod=0
FOR i=1 to ndof

kdiag(i)=sc1(i,i) ! diag element of modal stiffness matrix
FOR j=1 to ndof

IF i<>j then kmod=max(kmod,abs(sc1(i,j)))
NEXT j

NEXT i
hdr1$=" Modal Mass Modal Stiffness Square Root"
hdr2$=" index Diagonal Diagonal Ratio = wn r/s"
ivg$= " ## #.###^^^^#.###^^^^######.###"
PRINT hdr1$
PRINT hdr2$
FOR i=1 to ndof

wn=sqr(kdiag(i)/mdiag(i))
PRINT using ivg$: i,mdiag(i),kdiag(i),wn

NEXT i
PRINT " Modal Mass Max Abs Off-diagonal Element = ";mmod
PRINT " Modal Stiff Max Abs Off-diagonal Element = ";kmod
PRINT
PRINT " This demonstrates that the modal matrix, found through the"
PRINT " forward and inverse Choleski transformations, does in fact"
PRINT " diagonalize the mass and stiffness matrices to produce the"
PRINT " diagonal modal mass and modal stiffness matrices"
GET KEY xxx

SUB jacobi
! Assume upper triangular [A] matrix as input
! Set up initial evector matrix, compute s1 and s
FOR i=1 to ndof
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s1=s1+A(i,i)^2
evect(i,i)=1
FOR j=i+1 to ndof

odsq=odsq+A(i,j)^2
NEXT j

NEXT i
s=2*odsq+s1

! Begin Jacobi iteration ...
FOR iter=1 to itmax

FOR i=1 to ndof-1
FOR j=i+1 to ndof

q=abs(A(i,i)-A(j,j))
! Compute sine and cosine of rotation angle
IF q<=e1 then

cang=1/sqr(2)
sang=cang

ELSE IF abs(A(i,j))<=e2 then
EXIT FOR

ELSE
p=2*A(i,j)*q/(A(i,i)-A(j,j))
spq=sqr(p^2+q^2)
cang=sqr((1+q/spq)/2)
sang=p/(2*cang*spq)

END IF
! Update columns i and j of evect
FOR k=1 to ndof

holdki=evect (k,i)
evect(k,i)=holdki*cang+evect(k,j)*sang
evect(k,j)=holdki*sang-evect(k,j)*cang

NEXT k
! Compute new elements of [A] in rows i and j
FOR k=i to ndof

IF k<=j then
aik(k)=A(i,k)
A(i,k)=cang*aik(k)+sang*A(k,j)
IF k=j then A(j,k)=sang*aik(k)-cang*A(j,k)

ELSE IF k>j then
holdik=A(i,k)
A(i,k)=cang*holdik+sang*A(j,k)
A(j,k)=sang*holdik-cang*A(j,k)

END IF
NEXT k
! Compute new elements of [A] in columns i and j
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aik(j)=sang*aik(i)-cang*aik(j)
FOR k=1 to j

IF k>i then A(k,j)=sang*aik(k)-cang*A(k,j)
IF k<=i then

holdki=A(k,i)
A(k,i)=cang*holdki+sang*A(k,j)
A(k,j)=sang*holdki-cang*A(k,j)

END IF
NEXT k
A(i,j)=0

NEXT j
NEXT i
! Find s2 and test for convergence
s2=0
FOR i=1 to ndof

eval(i)=A(i,i)
s2=s2+eval(i)^2

NEXT i
IF abs(1-s1/s2)<=e3 then

flag=1
! Re-order eigensolutions
FOR i=1 to ndof

order(i)=i
NEXT i
FOR i=1 to ndof

sa=eval(i)
sb=order(i)
si=i
FOR j=i+1 to ndof

IF eval(j)<sa then
sa=eval(j)
sb=order(j)
si=j

END IF
NEXT j
eval(si)=eval(i)
order(si)=order(i)
eval(i)=sa
order(i)=sb

NEXT i
FOR j=1 to ndof ! construct ordered modal matrix

jj=order(j)
FOR i=1 to ndof

modal(i,j)=evect(i,jj)
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NEXT i
NEXT j

ELSE
END IF
s1=s2
IF flag=1 then

EXIT FOR
END IF

NEXT iter

IF flag=0 then
PRINT " Solution Failed to Converge"
STOP

END IF
END SUB
END

References

[1] Hildebrand, F.B, Introduction to Numerical Analysis, New York: McGraw-Hill, 1956.

[2] Hohn, F.E, Elementary Matrix Algebra, New York: Macmillan, 1964.

Mechanics of Machines c 2019 Samuel Doughty





Appendix 2

Newton-Raphson Solution

The Newton-Raphson solution method is a technique for numerically solving systems of
simultaneous, nonlinear equations. Such systems of equations are frequently encountered
in kinematic position analysis, and a clear understanding of the method is essential.

Consider the system of equations to be solved as

f1 (q1; q2; : : : qm; s1; s2; : : : sn) = 0

f2 (q1; q2; : : : qm; s1; s2; : : : sn) = 0
...

fn (q1; q2; : : : qm; s1; s2; : : : sn) = 0

where

� q1; q2; : : : qm are primary variables, values either assigned at will or determined by
means outside this system of equations,

� s1; s2; : : : sn; are secondary variables to be determined by the solution of these equa-
tions.

It is convenient to consider the si and the fi values as column vectors,

fSg = col (s1; s2; : : : sn)

fFg = col (f1; f2; : : : fn)

The solution process begins with an initial estimate for the solution, denoted as fS h1ig,
where the h1i indicates the �rst estimate. It is up to the user to provide this initial

Mechanics of Machines 557 c 2019 Samuel Doughty



558 APPENDIX 2. NEWTON-RAPHSON SOLUTION

estimate; Newton-Raphson is really only a process for re�ning estimates to approach
the true solution. The initial estimate may be determined from a scale drawing, by an
approximate calculation neglecting some factors, or simply a good guess. The better the
initial estimate is, the quicker the process will converge to the true solution. On the
other hand, if the initial estimate is too far removed from the desired solution, either the
process may not converge at all, or it may converge to another solution. (It is common
for these systems of equations to have many solutions in addition to the one desired.)
For most kinematics problems, there is little di¢ culty in making a reasonable starting
estimate.

If the vector function fFg is evaluated at fS h1ig, in almost all cases, it will not be the
zero vector. In the exceptional case where it is exactly f0g, then fS h1ig is the exact
solution, but this case is exceedingly rare! Assuming the usual case, where the function
values are not all zero (these nonzero values are usually called the residual, indicating
the values that remain nonzero), the problem becomes that of attempting to adjust the
solution estimate so as to reduce the residuals. To this end, consider a Taylor series
expansion of the vector function fF (fSg)g about the initial estimate, fS h1ig :

fF (fS h2ig)g = fF (fS h1ig)g+
�
@ ffg
@ fSg

�����
fSh1ig

(fS h2ig � fS h1ig) + � � �

The objective is to �nd fSg that makes fFg = f0g, so suppose that fS h2ig is the
argument vector that achieves this goal. If that is true, then (1) the left side of the
equation above is zero, and (2), the higher order terms in the equation may be dropped
(terms indicated by the � � � ), to give an expression that is solvable for the adjustment,
fS h2ig � fS h1ig, that is required to make this happen. The adjustment is

fS h2ig � fS h1ig = �
�
@ ffg
@ fSg

������1
fSh1ig

fF (fS h1ig)g

If the adjustment is added to fS h1ig, the result will be fS h2ig, the improved estimate
of the solution. It will not, in fact, be exactly the true solution because the higher order
terms were neglected, but it will be closer to the solution than the previous estimate. It
should be evident that this process can be repeated as many times as required to make
the residual vector, fF (S hii)g, as small as desired.

The square matrix, [@ ffg =@ fSg] ; is the Jacobian matrix for this system of equations.
The solution for the adjustment requires the inverse of the Jacobian. If for any reason
this inverse does not exist, the process cannot proceed. In terms of mechanism position
analysis, this is called a singular point, and such conditions must be handled by special
means on a case-by-case basis. Note that this is precisely the same Jacobian matrix
that appears again in the expression for the velocity coe¢ cients and velocity coe¢ cient
derivatives; this is no accident.
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The development above shows the calculation of the adjustment as the product of the
Jacobian inverse with the existing residual vector. This is equivalent to solving a system
of linear equations. From a numerical standpoint, and depending on the software in use,
solving the system of equations may be preferable in terms of computation speed and
error control to inverting the matrix. When working in True BASIC, the process above
is best implemented exactly as shown. A �ow chart for the computer implementation is
shown in Figure A2.1.

Figure A2.1: Newton-Raphson Solution Sequence

If the process described above is to be done manually, the decision to terminate the
process will undoubtedly be made by the person performing the calculations at the earliest
possible moment. If the process is to be done by a computer, then it is necessary to tell
the computer when to stop iterating. There are three possible circumstances that indicate
iteration should end:

1. Iteration should stop when every element of the residual has been reduced to a
su¢ ciently small value to be considered (approximately) zero;

2. Iteration should end when the solution ceases to move, as indicated by adjustments
below some speci�ed threshold level. The solution may not be truly satisfactory,
but further iteration is not going to improve the estimate;
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3. Iteration should stop when the solution appears to simply wander, exceeding a
speci�ed number of steps, and indicating that the process is not converging.

The residual is a vector function, so it is necessary to assign a meaning to the idea of
reducing the residual to a suitably small value. From a conceptual point of view, the
simplest measure of the size of the residual is the absolute value of the largest element
in the residual vector. Using this approach, iteration should continue until the residual
element of maximum absolute value is less than an assigned error bound, typically 10�4

to 10�6 times a representative length for the mechanism. This representative length
identi�es the scale of the problem, thus connecting the allowable error to the system
dimensions.

The process in the previous paragraph is conceptually simple, but it requires a bit more
programming and more computer time to execute than a termination based on the sum
of the squares of the residual components. This sum of squares is

jfFgj2 = f 21 + f 22 + � � �+ f 2n

In most computer codes, this can be calculated very quickly with a minimum of e¤ort. It
should be evident that no single element in the residual can be larger than the square root
of the sum of the squares, so this single calculation essentially accounts for all residual
elements in a single calculation. Because it is squared, and the values are much less
than 1:0, the error criteria must be squared as well. Thus, for a termination criteria
comparable to that of the previous approach, the sum of squares should be less than
10�8 to 10�12 times the square of the representative length. The sum of squares criterion
is recommended because of its speed and ease of execution.

There are certainly circumstances when the process appears to hover near the solution
without �nally meeting the error criterion. If the magnitude of the adjustment vector
is small, say 10�5, then further iteration is unlikely to change the solutions in the �rst
four digits to the right of the decimal point, and it may be necessary to terminate the
iteration. The sum of squares approach can be used to measure the size of the adjustment
vector just as recommended for the residual.

The iteration should always be placed in a counted loop (usually a FOR-NEXT or similar
type loop) so that it does not go on endlessly, hanging the computer in an endless loop.
With good starting estimates, it is common to have the Newton-Raphson converge quickly
to very precise solutions, often within less than �ve iterations. Thus it is good practice
to limit the number of iterations to no more than 20 unless careful study of the process
indicates otherwise. In the event that the process is terminated for exceeding the allowed
number of iterations, it is important that the solution produced be marked as suspect
and not used further without examination. Thus, when the loop counter terminates a
solution, a �ag must be set to print a warning message and stop the whole computer
program to examine the results.
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The Newton-Raphson process is a powerful numerical technique, extraordinarily well
suited for the solution of kinematic position equations. It also has many other applications
in engineering and science, and the reader will do well to keep this very useful tool ready
at hand.
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Numerical ODE Solutions

For most mechanisms, the di¤erential equations of motion are nonlinear, coupled, ordi-
nary di¤erential equations with variable coe¢ cients. Generally, closed-form solutions are
not possible, but numerical solutions are readily available. The purpose of this appen-
dix is to provide a numerical method of solution, the fourth-order Runge-Kutta method,
without attempting to provide a comprehensive survey of available methods. The Runge-
Kutta method is relatively reliable and is suitable for all of the problem types addressed
in this text. There are many variations on the Runge-Kutta algorithm, and the partic-
ular forms presented here are those given by Abramowitz and Stegun (see References).
For those who wish to pursue the topic further, there is a large body of literature avail-
able, often referenced under such headings as Numerical Solution of Ordinary Di¤erential
Equations, Runge-Kutta, or Simulation.

A3.1 The Marching Solution

Before discussing the Runge-Kutta algorithm, it is useful to consider the basic philosophy
for the numerical solution of di¤erential equations. This is presented most simply in terms
of the Euler method applied to a single di¤erential equation of the form

_y = f (t; y)

with the initial condition y(0) = yo. The slope of the solution at t = 0 can be determined
by using the initial condition to evaluate the slope as expressed by the di¤erential equation
evaluated at the initial conditions; this information is indicated in Figure A3.1(a).

To obtain an estimate of the solution at t = h, where h is a small time step, the tangent
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Figure A3.1: The Marching Solution: (a) Initial Conditions, (b) The First Step, (c) After
Three Steps

line at t = 0 is projected to the right to intersect the line t = h. That intersection de�nes
the new (approximate) solution point, Y1, as shown in Figure A3.1(b).

The slope of the solution curve for t = h is evaluated from the di¤erential equation, using
t = h and y = y1. A tangent line is then projected to intersect the line t = 2h, which
de�nes a new solution point, Y2. This process of projecting a tangent line repeatedly,
called the Euler method, can be continued inde�nitely and generates an approximate
solution for the di¤erential equation in the form of a table of values. From the description
of the process, it is seen that the approximate solution is "marched out" from the initial
condition under the guidance of the di¤erential equation. The Euler method is not
recommended for actual application, but it serves as a good basis for understanding
the general idea of a "marching solution." The Runge-Kutta algorithm, presented below,
operates in a similar manner. The major di¤erence is that a more involved and more
stable procedure is used to project each new solution point from the previous point.

It should be noted that the computed solution is really only a list of values, Yo; Y1; Y2; : : :
associated with the time values 0; h; 2h; : : :. Although it is common practice to plot a
continuous line through these points, in fact, there is simply no function value information
available between the tabulation points. It is only because the physical process is assumed
to be smooth and continuous that there is some justi�cation for drawing the continuous
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solution curve.

A3.2 Fourth Order Runge-Kutta Method

There is a well�known family of stable solutions called Runge�Kutta solutions, named
for Carl Runge (1856�1927) and M.W. Kutta (1867�1944). Runge was associated with
the University of Göttingen from 1904 to 1925. Kutta is otherwise known for his work
in aerodynamics (the Kutta�Joukowski theory of lift). Probably the most widely used
single version of the Runge�Kutta algorithm is the fourth order algorithm. The term
fourth order means that it agrees at each step with a Taylor series expansion as far as
the fourth order di¤erence term. The fourth order Runge�Kutta involves the calculation
of several intermediate quantities before making the actual time step, all as follows, for
the di¤erential equation:

_y = f (t; y)

k1 = f (t; yi)

k2 = f

�
t+

h

2
; yi +

h

2
k1

�
k3 = f

�
t+

h

2
; yi +

h

2
k2

�
k4 = f (t+ h; yi + hk3)

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4)

It is obvious from their de�nitions that these quantities must be calculated in sequence,
beginning with k1 and continuing down through k4, then all four of them (k1; k2; k3 and k4)
are used to advance the solution one time step from ti to ti+1. On the one hand, this
process is very similar to the Euler step, but it di¤ers in that a more complex group of
estimates is used to project the solution forward across the time step.

A3.3 Systems of ODE

Multidegree of freedom systems give rise to systems of second-order di¤erential equations.
It is notationally awkward to present the application of the Runge-Kutta algorithm to a
general system of N di¤erential equations, so the process is illustrated here in terms of
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two second-order di¤erential equations. The extension to any larger number of equations
is then evident.

Consider the following system of di¤erential equations:

�q1 = f1(t; q1; q2; _q1; _q2)

�q2 = f2(t; q1; q2; _q1; _q2)

The �rst step is to replace this system with an equivalent system of �rst-order di¤erential
equations, based on the substitutions

u1 = q1 v1 = _q1

u2 = q2 v2 = _q2

so that the equivalent system of di¤erential equations is

_u1 = v1

_u2 = v2

_v1 = f1 (t; u1; u2; v1; v2)

_v2 = f2 (t; u1; u2; v1; v2)

Applying the Runge-Kutta algorithm to this system, the new solution values are given
by

u1;n+1 = u1;n + (1=6) (k11 + 2k12 + 2k13 + k14)

u2;n+1 = u2;n + (1=6) (k21 + 2k22 + 2k23 + k24)

v1;n+1 = v1;n + (1=6) (k31 + 2k32 + 2k33 + k34)

v2;n+1 = v2;n + (1=6) (k41 + 2k42 + 2k43 + k44)

The new values are based on the following derivative evaluations:

k11 = h v1;n

k21 = h v2;n

k31 = h f1 (tn; u1;n; u2;n; v1;n; v2;n)

k41 = h f2 (tn; u1;n; u2;n; v1;n; v2;n)
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k12 = h

�
v1;n +

1

2
k11

�
k22 = h

�
v2;n +

1

2
k21

�
k32 = h f1

�
tn +

1

2
h; u1;n +

1

2
k11; u2;n +

1

2
k21; v1;n +

1

2
k31; v2;n +

1

2
k41

�
k42 = h f1

�
tn +

1

2
h; u1;n +

1

2
k11; u2;n +

1

2
k21; v1;n +

1

2
k31; v2;n +

1

2
k41

�

k13 = h

�
v1;n +

1

2
k12

�
k23 = h

�
v2;n +

1

2
k22

�
k33 = h f1

�
t+

1

2
h; u1;n +

1

2
k12; u2;n +

1

2
k22; v1;n +

1

2
k32; v2;n +

1

2
k42

�
k43 = h f2

�
t+

1

2
h; u1;n +

1

2
k12; u2;n +

1

2
k22; v1;n +

1

2
k32; v2;n +

1

2
k42

�

m14 = h (v1;n +m13)

m24 = h (v2;n +m23)

m34 = h f1 (t+ h; u1;n +m13; u2;n +m23; v1;n +m33; v2;n +m4)

m44 = h f2 (t+ h; u1;n +m13; u2;n +m23; v1;n +m33; v2;n +m4)

The need for repeated evaluations of the second derivative expressions makes it clear that
these evaluations should be programmed as a subroutine. This subroutine can then be
called with the various argument combinations required. The actual application of these
equations is not as di¢ cult as might �rst appear. An example of this approach for a
multidegree of freedom system is given in Section 8.6.3.

A3.4 Runge-Kutta for Second Order ODE

The general fourth order Runge�Kutta, presented above, is certainly applicable to second
order ordinary di¤erential equations. However, because second order di¤erential equa-
tions arise so frequently in connection with the study of physical systems, it is convenient
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to have a particular form uniquely suited to their solution. In this context, consider the
second order di¤erential equation

�y = f (t; y; _y)

A fourth order Runge�Kutta speci�cally adapted to this equation is given by the following
sequence of derivative evaluations and variable update statements:

k1 = h � f (ti; yi; _yi)

k2 = h � f
�
ti +

1

2
h; yi +

h

2
_yi +

h

8
k1; _yi +

1

2
k1

�
k3 = h � f

�
ti +

1

2
h; yi +

h

2
_yi +

h

8
k1; _yi +

1

2
k2

�
k4 = h � f

�
ti + h; yi + h _yi +

h

2
k3; _yi + k3

�

yi+1 = yi + h

�
_yi +

1

6
(k1 + k2 + k3)

�
_yi+1 = _yi +

1

6
(k1 + 2k2 + 2k3 + k4)

ti+1 = ti + h

In the computer implementation that follows below, each variable is prefaced with rk42,
so that the current value of y becomes rk42y, etc.

SUB RK42(rk42t,rk42y,rk42dy,rk42h)
! A fourth order Runge-Kutta routine for a single second order ODE
! Based on the formulation in Abramowitz & Stegun, Handbook of
! Mathematical Functions, NBS AMS 55, #25.5.20, p. 897
! This routine assumes that the derivative evaluation is done by DERIV.
! The ODE is ddy = f(t,y,dy) = DERIV(tt,yy,yp,ypp)
! h is the step size
! First derivative evaluation ...
rk42tt=rk42t
rk42yy=rk42y
rk42yp=rk42dy
CALL DERIV(rk42tt,rk42yy,rk42yp,rk42ypp)
rk42k1=rk42h*rk42ypp
! Second derivative evaluation ...
rk42tt=rk42t+rk42h/2
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rk42yy=rk42y+rk42h/2*rk42dy+rk42h/8*rk42k1
rk42yp=rk42dy+rk42k1/2
CALL DERIV(rk42tt,rk42yy,rk42yp,rk42ypp)
rk42k2=rk42h*rk42ypp
! Third derivative evaluation ...
rk42tt=rk42t+rk42h/2
rk42yy=rk42y+rk42h/2*rk42dy+rk42h/8*rk42k1
rk42yp=rk42dy+rk42k2/2
CALL DERIV(rk42tt,rk42yy,rk42yp,rk42ypp)
rk42k3=rk42h*rk42ypp
! Fourth derivative evaluation ...
rk42tt=rk42t+rk42h
rk42yy=rk42y+rk42h*rk42dy+rk42h/2*rk42k3
rk42yp=rk42dy+rk42k3
CALL DERIV(rk42tt,rk42yy,rk42yp,rk42ypp)
rk42k4=rk42h*rk42ypp
! Update the solution ...
rk42t=rk42t+rk42h ! new solution time
rk42y=rk42y+rk42h*(rk42dy+(rk42k1+rk42k2+rk42k3)/6) ! new solution value
rk42dy=rk42dy+(rk42k1+2*rk42k2+2*rk42k3+rk42k4)/6 ! new solution velocity
END SUB

In reading through the code above, it is evident that a subroutine called DERIV must be
available to provide the required derivative values. The above mostly demonstrates the
repeated calls to such a subroutine with varying arguments to accomplish the Runge-
Kutta step for a second order di¤erential equation. The last three lines show the solution
updates, and the whole process should be enclosed in a loop to step the solution out.

A3.5 Simulation Languages

There are a number of simulation languages in the market today. These are programs
which have built into them all of the details shown above (or something similar), so
that the user needs only to specify the di¤erential equations to be solved, along with
the initial conditions, and then the program generates the numerical solution. Some of
these simulation languages allow input in block diagram form, such that the user does
not even have to completely formulate the di¤erential equations of motion. Matlab

R
is

famous for their popular Simulink
R
program that is block diagram oriented, and there

are several others in the market, such as CSMP
R
, ACSL

R
, and MIMIC

R
There is

no doubt that these programs are useful in engineering environments, particularly when
they need to be used by technicians who do not fully understand the mathematics of
their problems. One of the greatest di¢ culties with such programs is that they are often

Mechanics of Machines c 2019 Samuel Doughty



570 Appendix 3 References

di¢ cult to check. The user does not have access to all of the details of the program, and
consequently may wonder whether particular aspects of the problem have been correctly
entered into the simulation language.

References

[1] Abramowitz, M. and Stegun, L. A., eds., Handbook of Mathematical Functions, Wash-
ington, D.C.: National Bureau of Standards, Applied Mathematics Series 55, US Gov-
ernment Printing O¢ ce, 1964 (9th printing, earlier printings had a few errors).

[2] Hildebrand, F. B., Introduction to Numerical Analysis, New York: McGraw-Hill, 1956.
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Appendix 4

Geometric Property Calculations

A4.1 Introduction

In many of the problems discussed in this book, the mass properties of the various rigid
bodies are assumed known. For actual engineering practice, this raises the question,
"Where does this information come from?" How are the mass, location of center of mass,
and mass moments of inertia determined for actual machine components? There are
several possible answers to this question, including:

1. They can be determined by experiment, provided the physical parts already exist.
The mass is determined by weighing the object, the center of mass is determined
(at least in principle) by �nding the balance point, and the mass moments of inertia
can be determined by appropriate pendulum experiments.

2. For simple shapes, the mass properties can be calculated directly, often making use
of the parallel axis theorem in order to combine calculations for di¤erent regions.

3. Some high end CAD programs are able to compute these properties after the part
has been modeled in that CAD environment.

4. For a number of cases of interest, the mass properties can be calculated using
Green�s Theorem.

The subject of this appendix is the fourth item in the list above, the applications of
Green�s Theorem, to determine properties for plate-like bodies and for bodies of revolu-
tion, particularly when the boundaries are irregular in shape.

The calculations discussed below are essentially geometric in nature (hence the title for
this appendix), but they are adaptable to the determination of the mass properties by the
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inclusion of a density factor, �, and in some cases, the a thickness factor, t, for plate-like
bodies. For most purposes, � should be considered to be the mass density, mass/volume.
If the value of the speci�c weight (weight/volume) is used for �; then the properties
calculated are weight based, rather than mass based. If the factor � = 1 is used, then
purely geometric properties result.

A4.2 Green�s Theorem

One of the topics often discussed in an Advanced Calculus course is called Green�s The-
orem [1; 2]. In the abstract, the value of this theorem is often unclear, but as will be seen
here, it is particularly useful for the numerical evaluation of certain double integrals. The
theorem states:

Let D be a domain of the x-y plane and let � be a piece-wise smooth simple
closed curve in D whose interior is also in D. Let P (x; y) and Q(x; y) be func-
tions de�ned and continuous and having continuous �rst partial derivatives
in D. Then I

�

P dx+Q dy =

ZZ
A

�
@Q

@x
� @P

@y

�
dx dy

where A is the closed region bounded by �: The integration process proceeds
around the boundary curve with positive area on the left, that is, in a counter
clockwise sense.

For present purposes, this theorem is used to convert double integrals into cyclic line
integrals. The cyclic line integrals lend themselves to numerical evaluation in a com-
puter code. The conversion is accomplished by �nding appropriate functions P (x; y) and
Q(x; y), such that the integrand of the double integral is in the form of the right side of
the expression above. Then Green�s Theorem provides the equivalent in the form of a line
integral. The problem then becomes on of numerical evaluation of the line integral along
the appropriate boundary. Provided that the boundary of the domain of integration can
be reasonably approximated by a sequence of straight line segments drawn between a set
of node points on the boundary, the integration is usually straight forward.

Consider the closed boundary curve broken into n segments by n nodes. For the cyclic
integral, the integration may be taken as n line integrals, comprising the complete path
of integration, �:I

�

(� � � ) ds =
Z x2;y2

x1;y1

(� � � ) ds+
Z x3;y3

x2;y2

(� � � ) ds+ � � �+
Z x1;y1

xn;yn

(� � � ) ds
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As mentioned just above, for numerical evaluation of the cyclic integral, the boundary
curve � is replaced by an irregular n-sided polygon de�ned by the n nodes, numbered
in the sense of positive motion along � and approximating the boundary curve. The
sequence must enclose the area on the left when the boundary is traversed in the counter
clockwise sense.

To prepare for numerical evaluation of the cyclic integrals, the contribution of a boundary
segment from (xi; yi) to (xi+1; yi+1) for each of three cases is required. These expressions
are developed by substituting the forms appropriate to each of the three cases in the
integral and evaluating the integral between the two end points for each case. The
resulting expressions for the contribution of each increment can then be implemented in
a subroutine for the numerical evaluation.

A4.3 Planar Area Properties

The area, centroidal coordinates, and area moments of inertia for a planar area are
properties de�ned by the following double integrals:

A =

ZZ
A

1 dx dy

xc = 1
A

ZZ
A

x dx dy

yc = 1
A

ZZ
A

y dx dy

Ixx =

ZZ
A

y2 dx dy

Ixy = �
ZZ

A

xy dx dy

Iyy =

ZZ
A

x2 dx dy

In order to apply the ideas presented above regarding Green�s Theorem, it is necessary
to consider the integrand of each of the double integrals as being in the form @Q

@x
� @P

@y

and then to devise appropriate functions P (x; y) and Q (x; y). The choices for P and Q
are not unique, but, in fact, there are many satisfactory choices. For this discussion, the
decision is made to take Q (x; y) � 0, and then chose an appropriate function for P (x; y)
for each case. This has the e¤ect of making the

I
Q dy = 0, and thus eliminating that

part of the calculation.

The fundamental approximation to be made is that the boundary curve, �, may be
approximated by an n�sided, irregular polygon. For the polygonal approximation, there
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are basically three cases:

Case 0 a vertical line, x = constant

Case 1 a horizontal line, y = constant

Case 2 an inclined line, y = si (x� xi) + yi

The �rst of these cases (number 0) is of no further concern, because the integral
R
P dx

is zero along a vertical line segment. For the other two cases, it is necessary to consider
them in detail for each of the properties to be determined. Note that, before using the
expressions developed for Case 2, it is necessary to evaluate si = slope of the line segment
between points i and i+ 1,

si =
yi+1 � yi
xi+1 � xi

Note: if jsij is very large (say, jsij > 1010), it is necessary to treat such a segment as a
vertical section and set all contributions to zero.

A4.3.1 Area

For the area calculation, P = �y is a satisfactory choice. With this choice, @P
@y
= �1,

and the double integral is

A =

ZZ
1 dx dy

= �
ZZ

@P

@y
dx dy

=

ZZ �
@Q

@x
� @P

@y

�
dx dy

=

I
P dx+Q dy

=

I
P dx

= �
I
y dx

The negative sign may appear out of place here, but recall that the boundary curve is
traversed with positive area on the left. Thus, for an area bounded by x = a, the x-axis,
x = b, and a curve y = f (x) > 0 for a � x � b, in order to enclose the area on the left,
the integration may be considered to begin at (a; 0), move to the right along the x-axis,
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up along the line x = b, right to left along the curve y = f (x), and down along the line
x = a. On three legs of the circuit, the integral is zero (either y = 0, or dx = 0) and the
expression for the area comes down to

A = �
I
y dx = �

Z a

b

y dx =

Z b

a

y dx

This is of course the familiar expression for the area, and the previous form is seen to be
compatible with the more familiar form for this situation.

For Case 1, the value of y is a constant and can be taken out of the integration. For Case
2, the integral can be evaluated along the inclined line segment. The results are, for the
area,

Case 1 �A = �yi (xi+1 � xi)

Case 2 �A = �
�
1
2
si
�
x2i+1 � x2i

�
+ (yi � sixi) (xi+1 � xi)

�
The two formulae above, giving �A for Cases 1 and 2, are referred to as increments in A,
or more simply just as increments. They are the incremental contributions to the cyclic
integral from the segment i to i+1. As noted previously, there is no increment when the
line segment is vertical because of the way in which the function Q (x; y) was chosen.

A4.3.2 Centroidal Coordinates

For the calculation of xc, the horizontal coordinate of the centroid, a suitable choice is
P = �xy, for which @P

@y
= �x. For the calculation of yc, the vertical coordinate of the

centroid, a suitable choice is P = �1
2
y2, for which@P

@y
= �y. The further development

parallels that above, and is presented below in a parallel format.

xc =
1
A

ZZ
x dx dy yc =

1
A

ZZ
A

y dx dy

= 1
A

ZZ �
� @P

@y

�
dx dy = 1

A

ZZ �
� @P

@y

�
dx dy

= 1
A

ZZ �
@Q
@x
� @P

@y

�
dx dy = 1

A

ZZ �
@Q
@x
� @P

@y

�
dx dy

= 1
A

I
(P dx+Q dy) = 1

A

I
(P dx+Q dy)

= 1
A

I
P dx = 1

A

I
P dx

= � 1
A

I
xy dx = � 1

2A

I
y2 dx

As before, the incremental contributions for Cases 1 and 2 must be determined for each
of these integrals. The process is illustrated above for �A, and the results for �xc and
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�yc follow:

Case 1 �xc =
�1
2A
yi
�
x2i+1 � x2i

�
Case 2 �xc =

�1
A

�
1
3
si
�
x3i+1 � x3i

�
+ 1

2
(yi � sixi)

�
x2i+1 � x2i

��
Case 1 �yc =

�1
2A
y2i (xi+1 � xi)

Case 2 �yc =
�1
2A
[1
3
s2i
�
x3i+1 � x3i

�
+ si (yi � sixi)

�
x2i+1 � x2i

�
+(y2i + s2ix

2
i ) (xi+1 � xi)]

A4.3.3 Area Moments of Inertia

The integrals involved for the area moments of inertia are

Ixx =

ZZ
A

y2 dx dy

Ixy =

ZZ
A

xy dx dy

Iyy =

ZZ
A

x2 dx dy

A4.3.3.1 Ixx �X-axis Moment of Inertia

Following the line of development given above, for the moment of inertia with respect to
the x-axis, a suitable choice for P is P = �1

3
y3 with the partial derivative @P

@y
= �y2.

When carried through to the �nal form, the expression for Ixx is

Ixx =

ZZ
A

y2 dx dy

= �
ZZ

A

@P

@y
dx dy

=

I
Pdx

= �1
3

I
y3 dx
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The incremental expressions for this integral are

Case 1 �Ixx = �1
3
y3i (xi+1 � xi)

Case 2 �Ixx = �1
3
[1
4
s3i
�
x4i+1 � x4i

�
+ s2i (yi � sixi)

�
x3i+1 � x3i

�
+3
2
si (yi � sixi)

2 �x2i+1 � x2i
�
+ (yi � sixi)

3 (xi+1 � xi)]

A4.3.3.2 Ixy �Product of Inertia

For the product of inertia, one suitable choice is P (x; y) = (1=2)xy2 with the derivative
@P
@y
= xy. Then the equivalent line integral is

Ixy = �
ZZ

A

xy dx dy

= �
ZZ

A

�
@P

@y

�
dx dy

=

I
�

Pdx

=

I
�

�
1

2
xy2
�
dx

For Case 1, y = constant, the contribution to the integral is

�Ixy =

Z xi+1

xi

�
1

2
xy2
�
dx

=
1

4
x2y2i

����xi+1
xi

=
1

4
y2i
�
x2i+1 � x2i

�

For Case 2, y = si (x� xi) + yi, the contribution to the integral is
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�Ixy =

Z xi+1

xi

�
1

2
xy2
�
dx

=
1

2

Z xi+1

xi

x [si (x� xi) + yi]
2 dx

=
1

2

Z xi+1

xi

x
�
s2i (x� xi)

2 + 2siyi (x� xi) + y2i
�
dx

=
1

2

Z xi+1

xi

x
�
s2i
�
x2 � 2xxi + x2i

�
+ 2siyi (x� xi) + y2i

�
dx

=
1

2

Z xi+1

xi

�
s2i
�
x3 � 2x2xi + xx2i

�
+ 2siyi

�
x2 � xxi

�
+ xy2i

�
dx

=
1

2

�
s2i

�
x4

4
� 2x

3xi
3

+
x2x2i
2

�
+ 2siyi

�
x3

3
� x2xi

2

�
+
x2y2i
2

�xi+1
xi

= s2i

�
1

8

�
x4i+1 � x4i

�
� 1
3
xi
�
x3i+1 � x3i

�
+
1

4
x2i
�
x2i+1 � x2i

��
+siyi

�
1

3

�
x3i+1 � x3i

�
� 1
2
xi
�
x2i+1 � x2i

��
+
1

4
y2i
�
x2i+1 � x2i

�

A4.3.3.3 Iyy �Y-axis Moment of Inertia

In the determination of Iyy, an appropriate choice for P is P = �x2y with the partial
derivative @P

@y
= �x2. This leads to the expression for Iyy as

Iyy =

ZZ
A

x2 dx dy

= �
ZZ

A

@P

@y
dx dy

=

I
�

Pdx

= �
I
x2y dx

The incremental expressions for Iyy are

Case 1 �Iyy = �1
3
yi
�
x3i+1 � x3i

�
Case 2 �Iyy = �1

4
si
�
x4i+1 � x4i

�
� 1

3
(yi � sixi)

�
x3i+1 � x3i

�
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The calculations described above are implemented in a simple program, PlnArea.Tru,
for which a listing follows below. Following the listing, there are two recommended test
cases to verify the program and a few comments on the quality of the results.

A4.3.4 Program PlnArea.Tru

! PlnArea.Tru
! Geometric properties for a planar area
! of arbitrary shape
OPTION NOLET
OPTION BASE 1
DIM x(0),y(0)
s1$=" Nodes must enclose the area,"
s11$="positive area on the left"
s2$=" This is sometimes described as"
s22$=" counter clockwise"
s3$=" Enter the total number of nodes to be used"
CLEAR
PRINT
PRINT " PlnArea.Tru"
PRINT
PRINT s1$&s11$
PRINT s2$&s22$
PRINT
PRINT s3$
INPUT n
MAT redim x(n),y(n)
PRINT
PRINT " Enter the node coordinates in pairs, xi,yi"
FOR i=1 to n

PRINT "x(";i;"), y(";i;") = ?"
INPUT x(i),y(i)

NEXT i
CALL PAcalcs
PRINT
PRINT " Results"
PRINT
PRINT " Area = ";area
PRINT " xc = ";xc
PRINT " yc = ";yc
PRINT " Ixx = ";ixx
PRINT " Ixy = ";ixy
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PRINT " Iyy = ";iyy

SUB PAcalcs
asum=0 ! initialize sum for area
xcsum=0 ! initialize sum for Xc
ycsum=0 ! initialize sum for Yc
ixxsum=0 ! initialize sum for Ixx
ixysum=0 ! initialize sum for Ixy
iyysum=0 ! initialize sum for Iyy
x1=x(1)
y1=y(1)
FOR i=1 to n

i2=i+1
IF i2<=n then ! usual case

x2=x(i2)
y2=y(i2)

ELSE IF i2>n then ! last side
x2=x(1) ! close the polygon
y2=y(1)

END IF
IF x2=x1 then

da=0 ! vertical edge
dxc=0
dyc=0
dixx=0
dixy=0
diyy=0
EXIT IF

ELSE IF y2=y1 then
CALL cas1 ! horizontal segment

ELSE IF y2<>y1 then
CALL cas2 ! sloping segment

END IF
! Add increments ...
asum=asum+da
xcsum=xcsum+dxc
ycsum=ycsum+dyc
ixxsum=ixxsum+dixx
ixysum=ixysum+dixy
iyysum=iyysum+diyy
x1=x2
y1=y2

NEXT i
! Final evaluations ...
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area=asum
xc=xcsum/area
yc=ycsum/area
ixx=ixxsum/3
ixy=ixysum
iyy=iyysum

END SUB
SUB cas1

da=-y1*(x2-x1)
dxc=-y1*(x2^2-x1^2)/2
dyc=-y1^2*(x2-x1)/2
dixx=-y1^3*(x2-x1)
dixy=y1^2*(x2^2-x1^2)/4
diyy=-y1*(x2^3-x1^3)/3

END SUB
SUB cas2

s=(y2-y1)/(x2-x1)
if abs(s)>1e7 then !treat like a vertical section

da=0
dxc=0
dyc=0
dixx=0
dixy=0
diyy=0
exit sub

end if
da=-(s/2*(x2^2-x1^2)+(y1-s*x1)*(x2-x1))
dxc=-(s/3*(x2^3-x1^3)+.5*(y1-s*x1)*(x2^2-x1^2))
dyc=(s^2/3)*(x2^3-x1^3)+s*(y1-s*x1)*(x2^2-x1^2)
dyc=-.5*(dyc+(y1-s*x1)^2*(x2-x1))
dixx=s^3/4*(x2^4-x1^4)+s^2*(y1-s*x1)*(x2^3-x1^3)
dixx=dixx+3*s/2*(y1-s*x1)^2*(x2^2-x1^2)
dixx=-(dixx+(y1-s*x1)^3*(x2-x1))
dixy=s^2*((x2^4-x1^4)/8-x1*(x2^3-x1^3)/3+x1^2*(x2^2-x1^2)/4)
dixy=dixy+s*y1*((x2^3-x1^3)/3-x1*(x2^2-x1^2)/2)
dixy=dixy+y1^2*(x2^2-x1^2)/4
diyy=-s/4*(x2^4-x1^4)-(y1-s*x1)*(x2^3-x1^3)/3

END SUB
END
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A4.3.4.1 Test Cases

It is useful to have a few test cases to validate a program such as this after it has been
coded for the computer. The two test cases below will exercise all aspects of the program,
and they are su¢ ciently simple to allow an exact calculation.

1. Rectangle: vertices at (2; 1) ; (4; 1) ; (4; 3) ; and (2; 3);

2. Triangle: vertices at (2; 0) ; (3; 0) ; and (2; 3).

Rectangle Triangle

Area = 4:0 1:5

xC = 3:0 2:333333

yC = 2:0 1:0

Ixx = 17:33333 2:25

Ixy = �24:0 �3:375

Iyy = 37:33333 8:25

The validity of the results when this program is applied to a complicated area with
curved boundaries is dependent on the degree of approximation achieved by the n�sided
polygon for which the program is exact (other than round-o¤and the inherent truncation
errors of �nite arithmetic). If the polygon deviates signi�cantly from the intended curved
boundary, the results are not very good. Dividing the curved boundary into a greater
number of parts will improve the results, and, in the limit as in�nitely many divisions
are used, the program result approaches the exact result, although the execution time
becomes unacceptable! If a part of the boundary is straight, the program computes
the contribution of that part of the boundary exactly; there is no bene�t to dividing a
straight edge into several segments.

A4.3.5 Rocker Mass Properties Example

In Chapter 7, one of the simulation examples involves a rocker that rolls around a circular
support. The rocker is a �at plate, bounded by �ve circular arcs and two straight lines.
It is shown in the adjacent �gure, the same as Figure 7.4. The purpose of this example
is to illustrate the application of the Planar Area program to the determination of the
inertial properties of such a body.
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Figure A4.1: Rocker Geometry on a 10 mm Grid (All Dimensions in Millimeters)

The rocker geometry is shown in Figure 7.5 on a 10 mm grid, and the rocker thickness
is 21 mm. Note that the origin of the body coordinate system is the center of the inside
radius at the level of the beginning of the arc (below that point, the pro�le is straight).
This choice is made because of the circular form of the body inner boundary, most easily
expressed with this coordinate system choice. Using the Planar Area Program of this
Appendix, the following properties are determined for the planar area of the part pro�le:

Property As Calculated Converted to SI Units

Area A = 5044:6 mm2 A = 5:0446 � 10�3 m2

Centroid

Coordinates

uc = 91:879 mm

vc = 23:306 mm

uc = 9:1879 � 10�2 m

vc = 2:3306 � 10�2 m

Area

Moments

of Inertia

Iuu = +7:4286 � 106 mm4

Iuv = �8:5492 � 106 mm4

Ivv = +4:4664 � 107 mm4

Iuu = +7:4286 � 10�6 m4

Iuv = �8:5492 � 10�6 m4

Ivv = +4:4664 � 10�5 m4

All the data in the table above is purely geometrical in nature, but what is required is
inertial data for the rocker. Thus the obvious question is, "How are these two related?"
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In the given data, there was � = 7800:6 kg/m3 and thickness t = 0:021 m. The mass of
the body is expressible as

M =

ZZZ
V

� dxdydz = �t

ZZ
A

dxdy = �tA

= (7800:6) (0:021)
�
5:0446 � 10�3

�
= 0:8264 kg

The center of mass coordinates, (xcm; ycm) are the same as the centroid, (xc; yc). For the
mass moments of inertia, the process is similar to that for the mass:

J uu =

ZZZ
V

�y2 dxdydz = �t

ZZ
A

y2 dxdy = �tIuu

= (7800:6) (0:021)
�
7:4286 � 10�6

�
= 1:2169 � 10�3 kg-m2

The parallel axis theorem is then employed to �nd the corresponding value at the center
of mass,

J uuc = J uu �Mv2c
= 1:2169 � 10�3 � (0:8264) (0:023306)2

= 7:6804 � 10�4 kg-m2

For the problem where this example originated, the mass moment of inertia with respect
to an axis at the center of mass and perpendicular to the plate is required. This is what
is often called the polar mass moment of inertia, Jzzc.

Jzzc = J uuc + Jvvc

This completes the process of �nding mass properties from the area properties. The �nal
results are summarized here:

M = 0:826367 kg

uc = 0:091879 m

vc = 0:023306 m

Jxxc = 0:00076804 kg-m2

Jyyc = 0:00036907 kg-m2

Jzzc = 0:00110864 kg-m2
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The other important data required for that problem are the locations of the several
attachment points. This is all summarized in the following list:

uA = +0:035795 m vA = +0:072885 m

uB = +0:115676 m vB = �0:036593 m

xD = +0:083976 m yD = �0:086593 m

This completes all of the required geometrical and inertial data for this example.

A4.4 Circular Segments

There are two closely related plane �gures derived from a circle that occur with some
frequency. As shown in Figure A4.2, consider a chordal line A � A0 dividing a circle
into two regions. The smaller area, I, is the lesser circular segment (ruled area), while
the larger area, II, is the greater circular segment. While their area properties can
certainly be determined numerically by the methods of the previous section, they are
also expressible in closed form as given below. All results are expressed with respect to
the X � Y coordinate system shown.

Figure A4.2: Circular Segments
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A4.4.1 Lesser Circular Segment, I

For the lesser circular segment, the area properties are expressed as

AreaI = R2 (�� sin� cos�) Enclosed Area

xcI = 0 Centroid Location

ycI =
R
3
[�3 sin�+sin(3�)]

sin(2�)�2� Centroid Location

IxxoI =
R4

4
(�+ sin� cos�� 2 cos3 � sin�) X-axis Area MOI

IyyoI =
R4

12

�
�3 sin� cos�� 2 sin3 � cos�+ 3�

�
Y-axis Area MOI

JooI =
R4

6
(3�� 2 cos3 � sin�� sin� cos�) Area Polar MOI

A4.4.2 Greater Circular Segment, II

AreaII = R2 (� � �+ sin� cos�) Enclosed Area

xcII = 0 Centroid Location

ycII = �
�
2R
3

�
sin3 �

���+sin� cos� Centroid Location

IxxoII =
R4

4
(� � �� sin� cos�+ 2 cos3 � sin�) X-axis Area MOI

IyyoII =
R4

12
(3� � 3�+ 5 sin� cos�� 2 cos3 � sin�) Y-axis Area MOI

JooII =
R4

6
(3� � 3�+ sin� cos�+ 2 cos3 � sin�) Area Polar MOI

A4.5 Properties for Solids of Revolution

Another application of the use of cyclic integrals is found in the determination of the
surface area, volume, and inertial properties of a solid of revolution. Each of these
quantities is describable as an integration over the area of the section; as before, such
an integration can be converted into a cyclic integral on the boundary of the section by
means of Green�s Theorem [3].
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A4.5.1 Basic De�nitions

Consider a solid of revolution de�ned by the z-axis and a plane �gure in the r� z plane
bounded by the curve �. For this solid, the surface area, volume, and axial position of
the centroid are

AS = 2�

I
�

r ds Surface Area

V = 2�

ZZ
A

r dr dz Volume

zc =
2�
V

ZZ
A

rz dr dz
Axial Position

of Centroid

where ds is di¤erential arc length along the curve �; and A is the total cross section area
with di¤erential element dr dz.

The body is assumed to be homogeneous with mass density �, so the total mass is simply

M = �V

and the center of mass coincides with the centroid of the volume. The cylindrical polar
coordinate system, r-�-z, is a principal coordinate system for this body, and the two
transverse moments of inertia are equal. There are, therefore, only two distinct mass
moments of inertia to be determined:

Irr = ��

ZZ
A

r3 dr dz + 2��

ZZ
A

rz2 dr dz Transverse MMOI

Izz = 2��

ZZ
A

r3 dr dz Axial MMOI

Note that while the integral for the surface area is expressed directly in terms of a cyclic
integral on �, all of the other properties require a double integration over the section
area.

A4.5.2 Application of Green�s Theorem

With the application of Green�s Theorem, these double integrals may be rewritten as
cyclic integrals on �. As mentioned in the previous application, the choice of functions
P (x; y) and Q (x; y) is not unique, and this application is not been handled in quite the
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same manner as the previous application. There are four basic integrals required, and
after these are evaluated the expressions above for surface area, volume, axial position
of the centroid, and moments of inertia are easily evaluated. The four basic integrals are

Mr =

ZZ
A

r dr dz =

I
�

(rz dr + r2 dz)

Mrz =

ZZ
A

rz dr dz =

I
�

�
rz2 dr + 3

2
r2z dz

�
Mrz2 =

ZZ
A

rz2 dr dz = �
I
�

(rz3 dr + r2z2 dz)

Mr3 =

ZZ
A

r3 dr dz =

I
�

(3r3z dr + r4 dz)

Through these integrals, the properties of interest may be considered as determined
by a contribution from each segment of the boundary curve �. In the evaluation of
these integrals, it is necessary (as before) that the boundary be traversed in the counter
clockwise sense, that is, with positive area lying on the left of the boundary curve.

A4.5.3 Polygonal Approximation

As in the previous application, the boundary curve is approximated by an irregular n-
sided polygon, and any particular side falls into one of three categories:

Case 1 a cylinder, r = constant

Case 2 a �at, annular disk, z = constant

Case 3 a conical surface, z = si (r � ri) + zi

Because of the manner in which Green�s Theorem is applied, all three cases can contribute
to the value of the integral.

The incremental contribution for each case is determined as in the previous application.
It is necessary to compute a slope, si, before applying any of the Case 3 increment
formulae. The several incremental expressions are summarized in the following table:
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Incremental Contributions

Case 1

Cylindrical

Section

r = constant

Case 2

Annular Disk

z = constant

Case 3

Conical Section

z = si (r � ri) + zi

si = � � � � (zi+1 � zi) = (ri+1 � ri)

�
�
As
2�

�
= ri jzi+1 � zij 1

2

��r2i+1 � r2i
�� 1

2

p
1 + s2i

��r2i+1 � r2i
��

�(Mr) = r2i (zi+1 � zi)
1
2
zi
�
r2i+1 � r2i

� 2
3
si
�
r3i+1 � r3i

�
�1
2
(siri � zi)

�
r2i+1 � r2i

�
�(Mrz) =

3
4
r2i
�
z2i+1 � z2i

�
1
2
z2i
�
r2i+1 � r2i

� 5
8
s2i
�
r4i+1 � r4i

�
�7
6
si (siri � zi)

�
r3i+1 � r3i

�
+1
2
(siri � zi)

2 �r2i+1 � r2i
�

�(Mrz2) = �1
3
r2i
�
z3i+1 � z3i

�
�1
2
z3i
�
r2i+1 � r2i

� �2
5
s3i
�
r5i+1 � r5i

�
+5
4
s2i (siri � zi)

�
r4i+1 � r4i

�
�4
3
si (siri � zi)

2 �r3i+1 � r3i
�

+1
2
(siri � zi)

3 �r2i+1 � r2i
�

�(Mr3) = r4i (zi+1 � zi)
3
4
zi
�
r4i+1 � r4i

� 4
5
si
�
r5i+1 � r5i

�
�3
4
(siri � zi)

�
r4i+1 � r4i

�

The theory developed above can be readily implemented in computer code. After this
is done, the most complicated cross sections become tractable in numerical form. A
program incorporating these ideas is listed below followed by a few comments on the
program and the results for an example calculation.

A4.5.4 Program SolRev.Tru

! SolRev.Tru
! Geometric properties for a Solid of Revolution
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! with an arbitrary cross section
OPTION NOLET
OPTION BASE 1
DIM r(0),z(0),x(0),y(0)
s1$=" Nodes must enclose the section area"
s2$=" counter clockwise in the R-Z plane"
s3$="Enter the total number of nodes "
s4$="to be used to define the section"
CLEAR
SET WINDOW 1,2,3,4
PRINT " SolRev"
PRINT
PRINT s1$
PRINT s2$
PRINT " (Positive area on the left.)"
PRINT
PRINT s3$&s4$
INPUT n
MAT redim r(n),z(n),x(n),y(n)
PRINT "Enter the material density."
INPUT p
PRINT
PRINT "Enter section node coordinates, (Ri, Zi)"
FOR i=1 to n

PRINT "R(";i;"), Z(";i;") = ?"
INPUT r(i),z(i)

NEXT i
CALL SRcalcs
CALL table
SUB SRcalcs

g1=0 ! sum for perimeter
g2=0 ! sum 1st radial moment of boundary
g3=0 ! sum for sect area
g4=0 ! sum 1st radial moment of area
g5=0 ! sum 1st axial moment of area
g6=0 ! sum product moment of area
g7=0 ! sum mr^3 - axial moment of inertia
g8=0 ! sum mrz^2 - transverse moment of inertia
FOR i=1 to n

i2=i+1
IF i2>n then i2=1
r1=r(i)
z1=z(i)
r2=r(i2)
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z2=z(i2)
d1=sqr((r2-r1)^2+(z2-z1)^2)
IF r1=r2 then

CALL cas1
ELSEIF z1=z2 then

CALL cas2
ELSE

CALL cas3
END IF
! Form sums
g1=g1+d1
g2=g2+d2
g3=g3+d3
g4=g4+d4
g5=g5+d5
g6=g6+d6
g7=g7+d7
g8=g8+d8

NEXT i
END SUB
SUB cas1 ! R=const

d2=r1*abs(z2-z1)
d3=0.5*r1*(z2-z1)
d4=r1^2*(z2-z1)
d5=-0.5*r1*(z2^2-z1^2)
d6=0.75*r1^2*(z2^2-z1^2)
d7=r1^4*(z2-z1)
d8=-r1^2*(z2^3-z1^3)/3

END SUB
SUB cas2 ! Z=const

d2=0.5*abs(r2^2-r1^2)
d3=-0.5*z1*(r2-r1)
d4=0.5*z1*(r2^2-r1^2)
d5=-z1^2*(r2-r1)
d6=0.5*z1^2*(r2^2-r1^2)
d7=0.75*z1*(r2^4-r1^4)
d8=-0.5*z1^3*(r2^2-r1^2)

END SUB
SUB cas3 ! Z=C(R-Ri)+Zi

c=(z2-z1)/(r2-r1)
f=c*r1-z1
d2=0.5*sqr(1+c^2)*abs(r2^2-r1^2)
d3=0.5*f*(r2-r1)
d4=2*c/3*(r2^3-r1^3)-0.5*f*(r2^2-r1^2)
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t1=-2/3*c^2*(r2^3-r1^3)
t2=1.5*c*f*(r2^2-r1^2)
t3=-f^2*(r2-r1)
d5=t1+t2+t3
d6=5/8*c^2*(r2^4-r1^4)-7/6*c*f*(r2^3-r1^3)
d6=d6+0.5*f^2*(r2^2-r1^2)
t1=0.8*c*(r2^5-r1^5)
t2=-0.75*f*(r2^4-r1^4)
d7=t1+t2
t1=-0.4*c^3*(r2^5-r1^5)
t2=1.25*c^2*f*(r2^4-r1^4)
t3=-4/3*c*f^2*(r2^3-r1^3)
t4=0.5*f^3*(r2^2-r1^2)
d8=t1+t2+t3+t4

END SUB
SUB table

hdr$=" ### ####.#### +####.####"
CLEAR
PRINT "Print the data? y/n"
INPUT g$
IF g$="y" then

PRINT " input Data"
PRINT " i R(i) Z(i)"
FOR i=1 to n

PRINT using hdr$: i,r(i),z(i)
NEXT i
PRINT
PRINT "Strike any key to continue"
GET KEY xxx

END IF
blk$=" "
PRINT
PRINT " Section Area Properties"
PRINT blk$&"Perimeter = ";g1
PRINT blk$&"Perimeter 1st moment = ";g2
PRINT blk$&"Cross section area = ";g3
PRINT blk$&"Section area radial 1st moment = ";g4
PRINT blk$&"Section area axial 1st moment = ";g5
PRINT blk$&"Centroid radius = ";g4/g3
PRINT blk$&"Centroid axial position = ";g5/g3
PRINT
PRINT blk$&" Solid of Revolution Properties"
PRINT blk$&"Surface area = ";2*pi*g2
PRINT blk$&"Volume = ";2*pi*g4
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PRINT blk$&"Mass = ";2*pi*g4*p
PRINT blk$&"Axial position of body centroid = ";g6/g4
PRINT
PRINT blk$&" Principal Mass Moments of Inertia"
PRINT blk$&"Irr = ";p*pi*(2*g8+g7)
PRINT blk$&"Izz = ";2*pi*p*g7
SET CURSOR "off"
GET KEY xxx

END SUB
END

The program begins with a data entry portion, and then the main calculation is done in
a subroutine named SRcalcs and subroutines that it calls, cas1, cas2, and cas3. These
last three routines implement the detailed formulae given before the program listing for
each of the three cases. The determination of which case applies is made in calcs, using
a sequence of if-statements. The very last calculations and formatting of the printed
results is done in the subroutine table. It is recommended that the user consider plotting
of the data after entering the node coordinates (ri; zi) that de�ne the cross section. This
will facilitate checking the data to assure that the correct section is calculated.

A4.5.4.1 Test Case

Consider the triangular section de�ned by the following nodes:

Node ri zi

1 1:00 0:50

2 3:00 0:00

3 2:00 2:00

When this section is revolved about the z�axis, the result is a ring with triangular
section, having an edge on the inside, the outside, and the top. The mass density is
taken as 1:0 for this example.
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The computed results for this body of revolution are as follows:

Section Area Properties

Perimeter = 6:1003964

Perimeter 1st Moment = 12:417439

Cross Section Area = 1:75

Section Area Radial 1st Moment = 3:50

Section Area Axial 1st Moment = 1:4583333

Centroid Radius = 2:00

Centroid Axial Position = 0:8333333

Solid of Revolution Properties

Surface Area = 78:02107

Volume = 21:991149

Mass = 21:991149

Axial Position of Body Centroid = 0:8125

Principal Mass Moment of Inertia

Irr = 68:172561

Izz = 98:960169

While only a simple cross section (a triangle) is involved here, the problem quickly be-
comes very complicated and quite laborious by manual methods. More complicated cross
sections simply make the situation worse.

A4.5.5 Gear Blank Example

In Figure 4.1 a gear blank is shown, both in half section and in cross section views. This
body is described in the following data table:
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Gear Blank Cross Section Data

All dimensions in millimeters.

Node ri zi Node ri zi

1 12.70 0.00 7 63.50 25.40

2 24.33 0.00 8 50.80 25.40

3 24.33 12.70 9 50.80 21.28

4 49.48 12.70 10 24.33 21.28

5 50.80 7.70 11 24.33 25.40

6 63.50 7.70 12 12.70 24.40

Figure A4.3: Gear Blank

The material for this has mass density � = 7:8005506 � 10�6 kg/mm3. Using the Sol-
Rev.Tru program, the computed results are
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Gear Blank Section Area Properties

Perimeter = 169:491 mm

Perimeter 1st Moment = 6129:121 mm2

Cross Section Area = 750:605 mm2

Section Area Radial 1st Moment = 27013:789 mm3

Section Area Axial First Moment = 11366:933 mm3

Centroid Radius = 35:989 mm

Centroid Axial Location = 15:144 mm

Gear Blank Solid of Revolution Properties

Surface Area = 38510:403 mm2

Volume = 169732:644 mm3

Mass = 1:324 kg

Axial Position of Body Centroid = 15:876 mm

Principal Mass Moments of Inertia

Irr = 1804:231 kg-mm2

Izz = 2866:823 kg-mm2
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[3] Doughty, S., �Calculating Properties for Solids of Revolution,�Machine Design, 10
Dec., 1981, pp. 184 �186.
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Prime Mover Modeling

Relatively few mechanical systems function without some external power source. Cer-
tainly there are a few gravity driven machines (such as a weight driven mechanical clock),
but the vast majority of machines are driven either by an internal combustion engine or
an electric motor. The detailed description of both of these is beyond the scope of this
book, but some ability to model these prime movers will considerably extend the user�s
ability to model and analyze actual machine systems.

A5.1 Three Phase Induction Motors

Electric motors come in a vast assortment of types, from direct current (DC) motors to
alternating current (AC) motors, stepper motors, and more. A complete discussion of
these various types is far beyond the scope of this book, with the detailed mathematical
analysis even more so. That said, the fact remains that electric motors are integral
parts of many machines, and some understanding of them is necessary to understand the
dynamics of those machine systems. The discussion here is limited to what is called the
induction motor, a very common AC motor type. The other major AC motor type is the
synchronous motor, but it is far less frequently encountered.

The three phase induction motor is the workhorse of modern industry, providing the
power for a vast assortment of industrial machines. In comparable power sizes, they are
considerably less costly than synchronous motors. The single phase induction motor is
common only in the fractional horsepower range, and it is considerably more complex
mathematically than the three phase motor. In the discussion below, only across-the-
line operation is considered, thus excluding variable frequency drives (VFD) and various
"soft-start" mechanisms. Even for the basic three phase machine powered directly by
line current, modeling can be approached at several levels, as demonstrated below.
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Commercial electric power generation is done with three windings all on the same sta-
tionary element (called the armature), resulting in three sinusoidal voltages. Each phase
has the same amplitude, but they di¤er from each other in time by a phase shift. If the
three phases are denoted as A, B, and C; then the voltages will be vA (t) = V sin (2�ft) ;
vB (t) = V sin (2�ft+ 2�=3) ; and vC (t) = V sin (2�ft� 2�=3). These voltages exist be-
tween a common neutral point and the outer end of each armature winding, so that there
are usually four wires extending out from the generator (the three phase ends and the
neutral terminal). The factor f is called the line frequency, and is typically either 60 Hz
or 50 Hz, although other frequencies are used for some situations. The rotating element
of a generator carries a winding supplied with DC power and called the �eld winding.
Electric power taken from the armature is called three-phase power, referring to the three
sinusoidal voltages generated. When an external circuit is completed between the end
of one phase and the neutral point, this is called a single phase circuit. Most fractional
horsepower motors use single phase power. If all three phases are fed to a motor, this is
an application of three-phase power. The vast majority of industrial machinery is driven
by three-phase induction motors, and that is the principal focus of this discussion.

A5.1.1 Induction Motor Construction

From a mechanical perspective, any motor or generator consists of two major parts,
identi�ed with their motions. The rotating element is always called the rotor, no matter
whether it carries the armature or �eld windings. The stationary element (usually but
not always on the outside) is called the stator, again no matter which type of windings
are attached to it. The stator supports the bearings that in turn support the weight of
the rotor. The rotor typically includes the shaft that transmits mechanical power to or
from the rotor and supports the weight of the rotor.

To those of a mechanical mind-set, the operation of the induction motor is often a
mystery because there is no visible connection to the rotor. In the very common "squirrel
cage" motor construction (more about this terminology below), there is no electrical or
mechanical power connected to the rotor other than the load, and the means by which
torque between the rotor and stator is created is not visible. This is because the torque
is developed through electromagnetic induction, that is, by magnetic �eld coupling.

Because time varying magnetic �elds are involved in both the stator and the rotor, all of
the components in the magnetic circuit components are subject to eddy currents which
induce power losses through heating. To minimize eddy current losses, the magnetic
structures (rotor, stator) are each constructed as laminated stacks, which is to say that
they are stacks of thin sheet steel (or iron), each layer with the same outline but insulated
electrically from each other. Thus the stator and the rotor each are laminated structures,
even though they appear to the eye to be solid blocks of magnetic material. The electrical
current carrying elements are embedded in slots in these structures.
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A5.1.1.1 Stator Circuits

The magnetic material of the stator is a stack of thin rings, with slots in the axial direction
on the inner surface. The stator windings are embedded in these slots in such a way as
to form three distinct magnetic windings. This is shown schematically in Figure A5.1,
although the actual winding pattern may be di¢ cult to discern by visual inspection of
the hardware.

Figure A5.1: Y-connected Stator Circuits for an Induction Motor

Figure A5.1 shows the three windings, oriented 120o apart in space, each with an in-
ductance (L) and a resistance (R); it is assumed that all three windings are identical.
The four connection points (A; B; C; and Neutral) are shown along with the three ap-
plied voltages VA (t) ; VB (t) ; and VC (t). The currents (iA (t) ; iB (t) ; and iC (t)) �owing
in these windings develop magnetic �elds oriented along the axis of each winding. The
magnetic �elds of the individual windings are:

BA (t) = [i cos (0) + j sin (0)] �Bsingle phase [cos (2�ft)]
BB (t) = [i cos (2�=3) + j sin (2�=3)] �Bsingle phase [cos 2�ft+ 2�=3]
BC (t) = [i cos (2�=3)� j sin (2�=3)] �Bsingle phase [cos 2�ft� 2�=3]

where, in each case, the factor ahead of the dot is a unit vector giving the spatial orien-
tation of the winding while the factor following the dot gives the amplitude and the time
dependence of the magnetic �eld in the winding. The total �eld due to stator currents
(BS) is simply the sum of the three winding contributions. After some rather tedious
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vector arithmetic and trigonometry, the result is

BS (t) =
3

2
Bsingle phase [i cos (2�ft)� j sin (2�ft)]

There are two important points to note here:

� The resultant �eld has constant magnitude equal to 1:5 times the maximum �eld
of a single phase winding;

� The quantity in brackets is simply a unit vector rotating at the electrical supply
line frequency.

One �nal comment is required regarding the stator windings. As presented above, every
thing is described in terms of a "two pole" motor stator structure. This means that the
stator winding is arranged to create a �eld comparable to that of a simple bar magnet
(one north pole, one south pole) rotating about the shaft axis. In this case, the circular
frequency of the magnetic �eld is simply

!e = 2�f

It is common to employ more complicated winding arrangements to create a rotating
magnetic �eld with four poles, six poles, or more. For a stator structure with np poles
(remembering that np is always a positive even integer), the circular frequency of the
stator �eld is

!e =
2�f

np=2
= 4�f=np

The circular frequency of the stator �eld de�nes an important quantity usually called the
synchronous frequency or synchronous speed. This term becomes quite important later.
It is the angular velocity of the combined stator magnetic �eld vector (BS).

A5.1.1.2 Rotor Structure

As mentioned previously, the rotating element is a stacked structure such as shown
in Figures A5.2 and A5.3. Looking at Figure A5.2, the structure, composed of many
laminas, is show, with aligned slots permitting the rotor bars to be embedded axially.
The rotor shaft (non shown) is pressed through the axis of the entire stack to rigidly
connect the shaft and stack.

Figure A5.3 shows the same structure shown previously in Figure A5.2, with the addition
of the end rings. The end rings are electrically conductive material connected to all of
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Figure A5.2: Squirrel Cage Induction Motor Rotor Before End Rings Are Added

Figure A5.3: Squirrel Cage Induction Motor Rotor Including End Rings

the adjacent rotor bar ends. The rotor bars and the end rings are electrically isolated
from the laminations. The result is to create a large number of shorted electrical circuits
running from one end of the rotor to the other and back again. The end rings may be
brazed or silver soldered to the ends of the rotor bars in large machines where production
volumes are limited, or the entire conductive assembly (end rings and rotor bars) may
be cast in place in the laminate stack when large production volumes justify the cost of
establishing the casting process. Either way, the result is electromagnetically equivalent.

Looking at Figure A5.3, if it is imagined that the laminate stack is removed (an action
physically impossible to accomplish), what would be left would be the shaft and the rotor
bar/end ring structure. This is very similar to the "squirrel cage," a type of treadmill
commonly used for exercise of small animals such as squirrels and hamsters in captivity.
This is the source of the term squirrel cage induction motor ; it describes the electrical
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conduction paths in the rotor.

The electrical circuits of the squirrel cage rotor have very low, but �nite, resistance. For
some purposes, it is desirable to vary the rotor resistance during motor starting. When
this is required, the rotor is wire wound in a manner similar to the stator windings, instead
of having the rotor bar cage circuits. The ends of the rotor winding are brought o¤ the
rotating assembly by means of slip rings. A variable resistor is then added externally
to complete the rotor circuit. This form of the induction motor called a wound-rotor
induction motor. The wound-rotor machine has only limited application and is not
discussed further here.

A5.1.2 Slip

When the entire machine is assembled and line power is applied to the stator termi-
nals, the rotating magnetic �eld of the stator interacts with the many circuits of the
rotor, causing current to �ow in the rotor circuits. This is the same as the action of
a transformer, except that the rotor windings are movable with respect to the stator
windings.

Recall that the stator �eld is rotating with angular velocity !e = 4�f=np. The rotor
is, in general, turning at a di¤erent angular velocity, !m. It is customary to de�ne a
quantity called slip (s) as

s =
!e � !m
!e

It is evident that, when the machine is functioning as an induction motor, the slip is a
dimensionless fraction, 0 � s � 1 . When s = 0, the rotor speed is the same as that
of the stator magnetic �eld vector, and the machine is said to be at synchronous speed.
If s = 1, this means that the rotor is not moving (!m = 0). It is clear that the rotor
mechanical speed is

!m = !e (1� s)

so that knowing the slip implies knowing the mechanical shaft speed and vice versa.

When slip is zero (s = 0), the shaft speed is equal to the synchronous speed and there
is no torque generated in the motor. It is not possible for an induction motor to run
steadily at zero slip, even with no external load torque. Some small amount of torque is
required to provide for the motor internal losses due to bearing friction and windage on
the rotor.

It should be mentioned that when s < 0, the machine is functions as an induction gener-
ator. Such machines have become interesting in recent times as the preferred generator
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type for wind power applications.

A5.1.3 Terminology and Standards

There are two fundamentally di¤erent ways to look at induction motor characteristics.
One is the very detailed model, based on very accurate modeling of both the electrical and
magnetic characteristics. This approach requires a lot of information, but can give very
accurate results. The second is the more common engineering approach, often termed
the "static" torque-speed characteristic. This requires less information, but it fails to
show the high frequency oscillations in the torque response (more on this later). For the
present, only the static torque-speed curve is described, but the more detailed models
are brie�y discussed later. A typical "static" induction motor characteristic is shown in
Figure A5.4.

Figure A5.4: Typical "Static"Torque-Speed Curve for An Induction Motor

Induction motors are described by a number of standard terms (some of which are identi-
�ed in Figure A5.4), and by various industrial standards that establish acceptable ranges
for particular characteristics. The most important of these are described below:

� Rated Power (Prated) �the nominal steady power output of the motor, expressed
in horsepower or Watts.

� Rated Speed (Nrated) �the speed at which the motor produces rated output power,
point D in Figure A5.4, usually expressed in revolutions per minute (rpm). This is
necessarily somewhat less than synchronous speed because of the slip required to
support the rated load.
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� No-Load Speed (NNL) �speed at which the motor runs with no external load, point
E in Figure A5.4, in units of revolutions per minute (rpm). This is slightly less
than synchronous speed because of the small slip required to support the motor
internal losses.

� Rated Voltage (Vrated) � the root-mean-square (rms) line voltage for which the
machine is designed, expressed in volts. This is the safe operating condition for the
winding insulation.

� Supply Frequency (f) �the electrical power supply frequency for which the machine
is designed to operate, usually in Hz.

� Rated Torque (Full Load Torque) (Trated) �torque developed when the machine is
operating at rated voltage, frequency, and power, pointD in Figure A5.4, expressed
in foot-pounds or meter-Newtons.

� Starting Torque (Tstart) �the torque developed by the machine at stand-still, point
A on the curve of Figure A5.4. This is an important design parameter describing
the motor�s ability to overcome system static friction and inertia. The units are
either foot-pounds or meter-Newtons.

� Pull-up Torque (Tpu) �typically the motor torque drops slightly as the motor begins
to accelerate, point B in Figure A5.4. The minimum value during this drop is called
the pull-up torque, expressed in either foot-pounds or meter-Newtons.

� Breakdown Torque (Tm) �point C in Figure A5.4, the maximum torque developed
by an induction motor. This occurs at a speed greater than the pull-up point and
before torque drops to zero at synchronous speed. This is the absolute maximum
torque the machine can develop, and is never exceeded. The units are either foot-
pounds or meter-Newtons. For most induction motors, this typically occurs at 80%
to 95% of synchronous speed, although it may happen at higher or lower speeds for
special designs.

� Breakdown Slip (sm) �the slip at the breakdown torque point. It has no dimensions.

In the USA, the most commonly used standards for electric motors are those published by
the National Electrical Manufacturers Association, NEMA. The standards provide typical
ranges for most of the parameters above, based on rated power level and application type.
One of the most common standards for industrial motors is the NEMA-B design standard.
Similar standards exist, no doubt, in other nations. It is important to be aware of these
standards as a potential source for modeling information in the absence of more speci�c
information for a particular motor.
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A5.1.4 Approaches to Modeling

For mechanical engineering purposes, the primary objective in modeling an induction
motor is to describe the motor torque under various operating conditions. Heat genera-
tion, motor currents, and other considerations may also be important, but the focus here
is on motor torque. Several approaches to modeling are available, and the choice should
be governed by these two questions:

1. What is the purpose for the model? This includes the results that are required and
the level of accuracy necessary.

2. What information is available about the motor? This can range from the most
brief reference to a motor design standard (such as one of the NEMA standards)
all the way to the fully detailed design (rarely available to any other than the motor
manufacturer).

In almost all cases, there are compromises and trade-o¤s required in choosing a modeling
approach. Rarely ever is all of the desired data available. Even the motor manufac-
turer, who certainly has the greatest detail about the motor itself, usually lacks the
detailed information about the load. With these comments in mind, consider the follow-
ing approaches to modeling a squirrel cage induction motor where the objective is the
torque-speed relationship.

A5.1.4.1 Linear Model

As indicated in Figure A5.4, for situations where the motor is already running at near
rated conditions, the torque-speed relation is nearly linear. For torques from zero up to
a bit above the rated torque, it is easy to �t this portion of the curve with a straight line
that passes through two points:

T (!m) = co + c1!m

where

If no-load torque If no-load torque

& speed are known � & speed are unknown �

co = (Trated!NL � TNL!rated) = (!NL � !rated) co = Trated!synch= (!synch � !rated)

c1 = � (Trated � TNL) = (!NL � !rated) c1 = �Trated= (!synch � !rated)
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All of this has the advantage of requiring only minimum information about the motor,
but at the same time there are three disadvantages:

1. The linear �t is not exactly correct; there is some curvature to the torque-speed
function. This is usually not a serious defect. However, the linear �t is only
applicable over a relatively narrow speed range.

2. There is no clear indication as to the upper torque limit for which the model is
valid. If the dynamic torque range is very wide, there is the likelihood of using the
linear �t beyond the applicable range with no indication that an error has been
made.

3. If the actual torque exceeds the breakdown torque, the motor will stall and opera-
tion is unstable. This model cannot show that e¤ect at all.

A5.1.4.2 Basic Kloss Model

The basic Kloss model is a formula for the motor torque over the full motor operating
range, based on an observation thought to be �rst made by Dr. Max Kloss [1] and noted
again soon afterward by Catterson-Smith [2] ; both a bit over a century ago. It features
prominently in an on-line lecture by Prof. A. Binder [3]. It seems to be well known in
Eastern Europe and Russia, but is not so in the English speaking world. It requires very
little information about the motor for a model applicable over the full range of motor
slip.

The basic Kloss model assumes that

� The stator resistance is zero (the R values in Figure A5.1);

� The breakdown torque and slip (Tm and sm) are known.

With these bits of information, the motor torque-speed curve is approximated by the
expression

T (s) = 2Tm=

�
sm
s
+

s

sm

�

In application, to estimate the motor torque at any particular shaft speed, !, �rst the slip
at that speed is determined and then the formula is evaluated for that slip value. This
expression widely used, but it tends to under estimate the torque at high slip. Typical
results are shown in Figure A5.5 where it is assumed that Tm = 48 N-m and sm = 0:2 .
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Figure A5.5: Squirrel Cage Motor Torque-Speed Curve per Kloss Equation

A5.1.4.3 Improved Gärtner-Kloss Model

The currents induced in the rotor bars of the squirrel cage induction motor occur at slip
frequency, that is s � !e. At start-up, the slip is s = 1 and the slip frequency is at its
maximum value. Conversely, when the rotor is running at near synchronous speed, the
slip frequency is quite small. Due to an electrical phenomenon called the skin e¤ect,
the e¤ective resistance of a rotor bar depends on the frequency of the current. The bar
resistance is least when the slip frequency is zero (rotor at synchronous speed), and is
greatest when the slip frequency is maximum (rotor stationary). This topic is explored
in some detail in [4].

In [5], Gärtner, et al. have proposed an empirical correction to the basic Kloss formula
to compensate for the variation in rotor bar resistance. Their proposed form is

Tm (s) = 2Tm
�
1 + sm e

As
�
=

�
sm
s
+

s

sm
+ 2sm e

As

�

where A is a parameter such that 1:3 � A � 3:0. The Gärtner-Kloss equation torque-
speed curve is shown plotted in Figure A5.6, along with that of the basic Kloss formula (as
previously shown in Figure A5.5). Gärtner, et al. show a measured torque-speed curve
that is almost in exact agreement with that computed using their empirical formula with
A = 2:8:

There are several points of interest regarding the improved relation:

1. The predicted starting torque is considerably higher than that given by the basic
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Figure A5.6: Improved Gartner Model

Kloss formula; this is generally in accord with experience.

2. The improved formula shows the torque drop from the starting value out to the
pull-up speed. This dip is always absent from the torque-speed curve predicted by
the basic Kloss formula.

3. The improved formula and the basic Kloss formula are in close agreement at speeds
above the breakdown point.

4. Only one additional parameter is required (A) to apply the improved formula be-
yond the two required for the basic Kloss formula (sm; Tm). If the pull-up torque
value is available, it can guide the choice of A to be used.

A5.1.4.4 Approximate Model Application

The whole point of the Kloss or Gärtner-Kloss models is to provide a useful torque-speed
representation, based on information that is readily available. A brief survey of three
phase induction motors available from a number of manufacturers shows that the items
usually tabulated are: (1) rated power (Prated), (2) rated torque (Trated), (3) starting
torque (T (s = 1)), (4) maximum torque (Tm), (5) number of poles (np), and (6) rated
speed (Nrated). The most obviously missing parameter is sm; the slip at maximum torque,
a value required for either the Kloss or Gärtner-Kloss model. It is perhaps less surprising
that the Gärtner parameter, A, is not given, but he question remains, "how can either
of the approximate models be used with essential parameters absent?"
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On preliminary inspection, it appears that there are four conditions available to evaluate
the unknown parameters:

1. Torque at s = sm must have the known value Tm;

2. Torque at rated speed must have the known value Trated;

3. Torque at s = sm must be an interior maximum value (dT=ds = 0);

4. Torque at s = 1 must have the known value Tstart:

All four of these are true and must be satis�ed, but they are not all useful for determining
the unknown parameters. More careful investigation shows that #1 and #3 are iden-
tically satis�ed by the Gärtner-Kloss model. This leaves only #2 and #4 available for
determination of the two unknown parameters. The process is illustrated in the following
example.

A5.1.4.5 Parameter Determination Example

Consider a three phase squirrel cage induction motor operating on a 60 Hz electrical
supply. The catalog parameters available for this motor are:

Prated = 15 kW Tm=Trated = 2:15

Nrated = 1723:5 rpm Tstart=Trated = 1:5

The information that the electrical supply frequency is f = 60 Hz, combined with the
given rated speed, indicates that this is a four pole motor for which Nsynch = 1800 rpm.
Further, the rated speed expressed in radians per second is

!rated = (1723:5) (2�=60) = 180:48 rad/s

from which the rated torque is

Trated = Prated=!rated = 15000=180:48 = 83:112 N-m

With the value for !rated known, the rated slip is

srated = (Nsynch �Nrated) =Nsynch = (1800� 1723:5) =1800 = 0:0425

The unknown parameters of the Gärtner-Kloss model are sm and A, to be determined
from these two equations:

Trated = T (s = srated) = 2Tmsmsrated
�
1 + sme

A�srated
�
=
�
s2rated + 2s

2
msratede

A�srated + s2m
�
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Tstart = T (s = 1) = 2Tmsm
�
1 + sme

A
�
=
�
1 + s2m + s2me

A
�

With numerical values substituted, these are

83:112 = 2 � 2:15 � 83:112 � sm
�
1 + sme

0:0425A
�
=
�
0:04252 + 2 � 0:0425 � sm � e0:0425A + s2m

�
1:5 � 83:112 = 2 � 2:15 � 83:112 � sm

�
1 + sme

A
�
=
�
1 + s2m + 2s

2
me

A
�

While there is no simple algebraic solution for sm and A, there is no di¢ culty in obtaining
a numerical solution. When this is done (using 20 digit arithmetic in Maple

R
), the results

are

sm = 0:194819 A = 2:67940

Using these values in the Gärtner-Kloss model results in a torque-speed curve that sat-
is�es all four conditions identi�ed at the beginning of this discussion.

A5.1.4.6 Detailed Models

Because of their immense important in a wide variety of applications, induction motors
have been extensively studied for many years. The evolution of the squirrel cage induction
motor to its modern form is built on the work of many investigators and investors,
including but not limited to Tesla, Westinghouse, Steinmetz, etc. in the 19th century. It
seems that Steinmetz originated the equivalent circuit model that served as the principle
schematic model for the early analysis.

The application of Kircho¤�s voltage law to each circuit appears to be a mid-20th century
development, although the originator is unknown to this writer. For a three phase squirrel
cage induction machine, the result is a set of six ordinary di¤erential equations in six
unknown currents [6]. These are most easily comprehended if cast in matrix form, but
they do not admit of closed form solutions. E¤ective solutions had to wait for the
development of computational capability and suitable numerical solution techniques.

In the late 20th century, �nite element techniques were applied to the motor problem,
providing very detailed information about the magnetic �elds and the electrical aspects
of such machines; this is where the state of the art stands today.

In the earlier section on Terminology and Standards, the modi�er "static" was applied to
the torque-speed curves being discussed; the signi�cance of that modi�er now becomes
evident. Figure A5.7 shows a torque-speed curve developed by a detailed circuit model for
a squirrel cage motor starting under load from a reciprocating compressor [7]. The highly
oscillatory nature of the starting torque is inescapable. Thus the concept of "static" is
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Figure A5.7: Torque-Speed Curve for Induction Motor Starting Under Load From a
Detailed Circuit Model

intended to indicate that high frequency oscillations are absent, leaving only the moving
average value of the torque. For some engineering purposes, such as determining the
time required to bring a machine up to operating speed, the "static" torque-speed curve
is entirely adequate; many mechanical systems show little response to the high frequency
torque oscillations.

On the other hand, large amplitude, high-frequency oscillations in the motor torque dur-
ing start-up is found in the detailed models and also observed in engineering practice. A
computed oscillatory torque-speed response for the start-up of an induction motor driven
compressor is shown in Figure A5.7. Similar oscillations are presented by P.C. Krause
[6; pp. 195 - 202 ]. The high frequency oscillation of the starting torque means that
the mechanical system, understood as a collection of rigid bodies, cannot signi�cantly
respond, and only the mean torque (such as described by the Kloss or Gärtner-Kloss
models above) is available for gross acceleration of the load. However, it must be remem-
bered that the mechanical system is never actually comprised of rigid bodies; there is
always �exibility involved. Thus the high frequency torque oscillations during start-up
excite severe transient torsional oscillations in the driven machinery. For this reason,
the Kloss or Gärtner-Kloss models must never be used to investigate vibratory response;
they are only appropriate for the rigid body response.

All of this is particularly important in one surprising situation, the start-up of large
synchronous motors. Synchronous motors do not start in synchronous operating mode;
at standstill, they are simply too far out of synchronism. Instead, they always start
as induction motors, where the damper windings of the synchronous motor (physically
similar to the squirrel cage windings of an induction motor) function like an induction
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motor rotor. When the motor is almost up to synchronous speed after accelerating
as an induction motor, only then is the �eld current is applied to lock the rotor into
synchronism. Thus during start-up, a machine train, nominally driven by a synchronous
motor, is subject to the same sort of high frequency torque oscillations as an induction
motor driven train. During the world-wide oil shortage of the 1980s, many industries
wanted to shift to synchronous motors because they are more e¢ cient than induction
motors. This led to serious torsional vibration problems in some cases when synchronous
machines were substituted for induction motors.

A5.2 Internal Combustion Engines

Internal combustion engines are widely used to power machines, particularly in situations
where electrical power is not readily available. They include both gasoline and diesel pow-
ered engines, employing both two and four stroke thermodynamic cycles. Such engines
are important parts of the system under analysis in many cases, and it is necessary to
have the tools to describe them. Such engines employ slider-crank mechanisms, often
several such mechanisms, for which the kinematic and dynamic modeling is described in
Chapters 2 and 7. The topic comes up again in Chapter 12 regarding torsional vibrations,
speci�cally Section 12.6 where an example problem is presented involving a three station
torsional model for an engine�generator set. Thus in this Appendix, the discussion is
focused speci�cally on (1) the parameters of a particular diesel engine driven generator
set used for that example, and (2) the approximate thermodynamic description of the
combustion process and the resulting cylinder pressure.

A5.2.1 A Particular Diesel Generator System

The physical parameters of a particular engine driven generator system of Section 12.6
are summarized here. The details of the slider-crank are identi�ed in Figure A5.8. Notice
that, in the drawing, Figure A5.8, the centers of mass for both the crank and connecting
rod are show as o¤ the body U�axis. In the data table below, on the connecting rod is
given a displacement from the U�axis, but other data could be used equally well.
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Figure A5.8: Slider-Crank Piece Parts.
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Table A5.2 IC Engine Slider-Crank Physical Properties

USC Value & Units SI Value & Units

Crank

m1 = 2:2202 � 10�2 lb-s2/in = 3:8882 kg

uc1 = 0:0 in = 0:0 mm

vc1 = 0:0 in = 0:0 mm

J1o = 6:6745 � 10�2 lb-s2-in = 7:5412 � 10�3 kg-m2

Connecting Rod

m2 = 3:5753 � 10�3 lb-s2/in = 0:62613 kg

u2c = 1:4898 in = 37:841 mm

v2c = 0:0 in = 0:0 mm

J2c = 2:5470 � 10�2 lb-s2-in = 2:877 7 � 10�3 kg-m2

Wrist Pin

mwp = 8:3429 � 10�4 lb-s2/in = 0:14611 kg

Jwpc = 1:2581 � 10�4 lb-s2-in = 1:4215 � 10�5 kg-m2

Piston

m3 = 3:517 3 � 10�3 lb-s2/in = 0:61597 kg

Table A5.3 Linearized Three Station System Parameters

USC Units SI Units

K12 = 2:1550 � 106 in-lb/rad = 2:4348 � 105 N-m/rad

K23 = 1:2400 � 106 in-lb/rad = 1:4010 � 105 N-m/rad

J1o = 0:0876605414 lb-s2-in = 9:9043 � 10�3 kg-m2

J2o = 15:320 lb-s2-in = 1:7131 kg-m2

J3o = 1:020 lb-s2-in = 0:11524 kg-m2
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Table A5.4 Diesel Engine & Generator Parameters

USC Units SI Units

Bore dp = 4:020 in = 102:11 mm

Crank Radius R = 2:000 in = 50:8 mm

Connecting Rod Length L = 6:105 in = 155:07 mm

Crank Pin Diameter dcp = 1:980 in = 50:292 mm

Main Journal Diameter dmj = 2:000 in = 50:8 mm

Indicated Power IP = 297000 in-lb
s = 33:556 kW

Shaft Power SP = 258390 in-lb
s = 29:194 kW

Mechanical E¢ ciency �Mech = 87% = 87%

Engine Cylinder Damping d1 = 0:56333 in-lb-s = 0:063647 N-m-s2

Generator E¢ ciency �gen = 92% = 92%

Generator Damping d3 = 0:30160 in-lb-s = 0:03475 N-m-s2

A5.2.2 Eigensolution for the Three Station System

The free vibration response for the three station example of Section 12.6 can be obtained
just as for any other multidegree of freedom vibration, namely by assuming a solution
of the form f�g = fAg sin!nt and then substituting into the equations of motion. This
leads to the characteristic equation and generalized eigenproblem. When the numeric
values are substituted into the characteristic polynomial and the roots are determined
by the quadratic formula, the results are these: !n = �0; +0; �1138:48; +1138:48;
�4972:39; +4972:39 rad/s. Following the procedures described in Chapter 11, the mode
vectors (mode shapes) can also be determined as well, so the complete solution set for
non-negative eigenvalues are:

Table A5.5 Eigensolution for Example Problem

!o = 0 r/s !1 = 1138:48 r/s !2 = 4972:39 r/s8>>><>>>:
1:0

1:0

1:0

9>>>=>>>;
8>>><>>>:

1:00000

0:94728

�14:30365

9>>>=>>>;
8>>><>>>:

1:00000

�0:00574

0:00030

9>>>=>>>;
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A5.2.3 Thermodynamic Cycle

In describing the thermodynamic cycle, it is useful to introduce a new variable, s, the
piston displacement away from TDC such that

s = xMax � x = R + L� x

and a related, nondimensional variable, the stroke fraction, denoted as sf ,

sf =
s

sMax

=
R + L� x

2R

where it is assumed that there is no cylinder centerline o¤set. The variable s is such
that 0 � s � 2R; while 0 � sf � 1: Both of these are useful in the description of the
thermodynamic cycle.

The ultimate goal for this thermodynamic discussion is to be able to describe the torque
acting on the crank due to the gas pressure in the engine cylinder. The virtual work of
the gas pressure is:

�WGasPressure = �P (�) AP �x
= �P (�) AP Kx (�) ��

where P (�) is the net pressure acting on the combined top and lower sides of the piston
and AP is the piston area. It is clear that the gas pressure acts as a generalized force (a
torque) on the system in the amount �P (�) AP Kx (�).

The period of the gas pressure torque depends upon the number of strokes in the engine
thermodynamic cycle (two stroke or four stroke cycle). The time period of the torque is

� = NS�=


where

NS is the number of strokes in the cycle (either 2 or 4)


 is the nominal crank speed, rad/s.

Thermodynamic discussions of an idealized engine cycle (Diesel or Otto) are often pre-
sented as a sequence of straight line segments on a log-log plot; these translate into
exponential curves on a linear graph. Such a plot omits the details of the valve opening
and closing events. While this is certainly one approach to estimating the cylinder pres-
sure, actual measured data, taken from an operating engine under load, is a much better
source. Figure A5.9 represents such a plot for the two stroke engine considered here.
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Figure A5.9: Pressure-Stroke Fraction Diagram for Engine Cylinder

Consider the details of the process:

1. With the piston at BDC (� = ��); the system point is at the far lower right corner
of the diagram. The cylinder is vented, and the internal pressure is atmospheric,
Patm. The starting value is sf = 1:0:

2. As the crank moves forward, the piston advances toward the cylinder head. During
this interval, the stroke fraction varies from 1:0 to 0:0: At sf � 0:92; the valves
begin to close, an operation that is complete at sf � 0:84: Cylinder pressure
remains atmospheric until the valves begin to close.

3. After the valves close, the pressure begins to rise according to polytropic rule,
PV n = constant. This is the lower curve in Figure A54. This curve is followed
until sf = 0:0 and the cylinder pressure is just over 500 lb/in2 (roughly 3.8 MPa).

4. With the piston at TDC, the fuel ignites and the pressure rises suddenly to about
1170 lb/in2 (roughly 8 MPa).

5. As the piston moves away from the head, s increasing, the fuel continues to burn
for a while, and following that, the exhaust gases continue a polytropic expansion
until sf � 0:84 when the exhaust valves begin to open.

6. As the exhaust valves open, the pressure drops rapidly, a drop that be described at
least approximately as a linear drop until the valves are fully open at sf = 0:92:
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7. After the exhaust valves are fully open, the cylinder pressure is approximately
atmospheric, Patm, until the piston reaches BDC, sf = 1.

There are two curves shown in Figure A5.9. The lower curve is common to all operating
conditions; there is no chemical reaction taking place in the cylinder, and the cylinder
contains only the fuel/air mixture (or air alone, depending on the method for introducing
the fuel). The upper curve, describing the expansion process, is speci�c to the operating
condition that produces the indicated power listed in Table A5.4. For a di¤erent operating
condition, producing more or less indicated power, the upper curve has a similar shape
but has di¤erent values from that shown.

A5.2.4 Cylinder Pressure Modeling

It is tempting to use exponential expressions to describe the polytropic curves, but ex-
perience suggests that a better �t is obtained with the symmetric sigmoidal curve, a
function of the form

P = d+
a� d

1 +
�
s
c

�b
where a; b; c; and d are parameters to be adjusted to �t the particular data set. The short
block of computer code below gives the approach to generating both the compression and
expansion curves of interest here. Note that the necessary coe¢ cient values are embedded
in the code.

SUB PressFrac(j,sf,pr)
! input is stroke fraction, output is cyl abs pressure ratio
! j = 1 is the expansion curve
! j = 2 is the compression curve
! sf = stroke fraction
! sf1 is the point at which valves are fully sealed
! sf2 is the point at which valves are fully opened
IF sf<=sf1 then

IF j=1 then ! IMEP = 140 psi
pr=2.499803+(79.10112-2.499803)/(1+(sf/0.08461697)^1.421193)

ELSE IF j=2 then ! Compression Stroke
pr=0.4376185+(35.61922-0.4376185)/(1+(sf/0.0439023)^1.067053)

END IF
ELSE IF sf>sf1 and s<sf2 then ! Valves in motion

pr=(pr2-pr1)/(sf2-sf1)*(sf-sf1)+pr1
ELSE IF sf>sf2 then

pr=1
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END IF
END SUB

The subroutine inputs are the choice of curve (1 or 2) and the stroke fraction, denoted as
sf. The output is the pressure ratio, pr = P (s) =Patm, a nondimensional value applicable
in any system of units. The value of pr1 is determined by an initial call to this subroutine
with sf=sf1, the point where the polytropic expansion ends and the linear decline begins.
The value of pr determined from that call is then pr1. The value of pr2 is 1.0; at this
point, the valves are fully open and the cylinder is vented.

The reason for wanting to describe the cylinder pressure is to be able to calculate the gas
pressure torque acting on the crank. Applying the results above to the example engine
gives the results shown in Figure A5.10. Note that, as previously, the compression phase
is the lower curve while the expansion phase results in the higher values. As must be
expected, the crank torque is zero at TDC, despite the very high cylinder pressure at
that point.

Figure A5.10: Gas Pressure Torque Versus Crank Angle
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A5.2.5 Summary

This appendix presents a description of topics normally considered outside the Theory of
Machines, but nevertheless closely connected to it. Electric motors and internal combus-
tion engines are the prime movers that drive most of the machinery in use in the world
today (with due respect to steam and gas turbines, water power, wind power, etc.). An
awareness of how they can be modeled is essential to developing a broad capability in
the mechanics of machinery.
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Appendix 6

Rigid Body Kinetic Energy

Much of this book is built upon the application of energy methods, and of necessity this
often requires the ability to describe the kinetic energy of rigid bodies. The derivation
given here is quite general and is applicable to motion in both two and three dimensions.

A6.1 Kinematics

Consider the rigid body shown in Figure A6.1, and in particular the di¤erential element
of mass, dm. This mass element is located by the position vector R relative to an inertial
coordinate system. The position may also be expressed in terms of the position of the
center of mass, Rc, and the relative position of the mass element with respect to the
center of mass, R0,

R = Rc +R
0

Next consider the velocity of the mass element, dm. Because the body is rigid, the length
of R0 cannot change. The only change that can occur in the relative position vector R0

is a change in direction. The velocity of the mass element is

V = Vc + ! �R0

where Vc is the velocity vector for the center of mass, and ! is the angular velocity
vector of the rigid body.
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Figure A6.1: Rigid Body Moving In Three Dimensions

A6.2 Kinetic Energy

With this information available, the kinetic energy of the mass element can be written
as

dT =
1

2
V �V dm

=
1

2
(Vc + ! �R0) � (Vc + ! �R0) dm

=
1

2
[Vc �Vc + 2Vc � ! �R0 + (! �R0) � (! �R0)]

To obtain the total kinetic energy of the rigid body, the contributions from every element
are summed in an integration over the total mass.

T =

Z
M

dT

=
1

2
Vc �Vc

Z
M

dm

+Vc � ! �
Z
M

R0dm

+
1

2

Z
M

(! �R0) � (! �R0) dm

The �rst integral simply gives the mass of the body. The second integral vanishes. (Why?)
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The third integral requires rearrangement of the integrand using the vector identity:

A �B�C = B � (C�A)

where the �rst factor in parentheses, (! �R0), is taken for A, ! is taken for B, and R
0

is taken for C. The result makes to the leading factor that can be taken outside the
integral; for the remaining integrand, the integral is the angular momentum with respect
to the center of mass. To justify this statement, consider a motion consisting only of
rotation about the center of mass, in which case the product (! �R0) dm is the linear
momentum of the mass element. When R0 is crossed into the linear momentum, the
result is the angular momentum of the mass element with respect to the center of mass.
The integral then expresses the summation of the angular momentum contributions from
each mass element. Including a non-zero velocity for the center of mass modi�es the
linear momentum for the mass element, but the additional term contributes nothing to
the �nal angular momentum because the integral is zero.Z

M

(! �R0) � (! �R0) dm = ! �
Z
M

R0 � (! �R0) dm

= ! �Hc

= f!gT [Ic] f!g

In the �nal line, the angular momentum with respect to the center of mass is written
as the matrix product of the mass moment of inertia with respect to the center of mass
multiplied with the angular velocity vector. The �nal result is then:

T =
1

2
M Vc �Vc +

1

2
f!gT [Ic] f!g

For plane motion, where the angular velocity vector must be normal to the plane of
motion, the �nal term reduces to a scalar product:

T =
1

2
M Vc �Vc +

1

2
Ic!

2

In the event that the body is pinned at some point, a similar analysis applies. For that
case, the velocity of the mass element with respect to the �xed point is expressed �rst as
the cross product of the angular velocity with the relative position vector. The result is
expressed in a single term that involves the angular velocity vector and the mass moment
of inertia matrix referred to the �xed reference point o. The �nal result in that case is

T =
1

2
f!gT [Io] f!g

Again, for the case of plane motion, this reduces to the single scalar product

T =
1

2
Io!

2
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These two cases are su¢ cient for all kinetic energy expressions that are required.
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Appendix 7

Lagrange Equations Derivation

The Lagrange form for the equations of motion is an energy based method applicable
to multidegree of freedom systems. Because of being energy based, there are no vector
expressions to be handled, with only scalar quantities used instead. It is often much
more simple to apply than a Newton�s Second Law approach, particularly for complicated
systems.

A7.1 Derivation By Virtual Work

This appendix deals with the derivation of the Lagrange form for the equation of motion
by means of the Principle of Virtual Work [1]. The problem is formulated in terms of N
particles, subject to external forces and internal constraint forces. The constraints are
limited to what are called workless constraints, that is, forces of constraint that do no
work as the motion progresses. These are the common type of constraints, and this is
not a severe limitation. Including constraint forces makes the result applicable to rigid
bodies, because a rigid body may be considered as a collection of a large number of
individual particles with a similarly large number of constraint forces.

Consider a collection of N particles, each with a position vector of the form

Ri = Ri (q1; q2; q3; : : :) i = 1; 2; : : : N

where q1, q2, q3, ::: are generalized coordinates. The total force on the ith particle is
composed of the externally applied force and the force of constraint (which may be a
rigid body internal force):

Fi = Fei + Fci
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The motion of the particle is described by Newton�s second law:

Mi
_Vi = Fi = Fei + Fci

or
Fei + Fci �Mi

_Vi = 0

The virtual work of the terms in the preceding line is necessarily zero, and the sum of
such terms over all of the particles remains zero:

�W =

NX
i=1

�
Fei + Fci �Mi

_Vi

�
� �Ri = 0

Now, because the constraints are assumed to be workless, the sum of the virtual work of
the constraints is zero:

NX
i=1

Fci � �Ri = 0

In writing the remaining expression, the subscript e is dropped, as external forces are
understood to be the only forces of interest:

�W =
NX
i=1

Fi � �Ri �
NX
i=1

Mi
_Vi � �Ri = 0

Now focus on the latter term, the virtual work of the momentum derivative. The virtual
displacement of the ith particle is

�Ri =
X
j

@Ri

@qj
�qj

where the sum extends over all of the generalized coordinates. The virtual work of the
momentum derivative is thenX

i=1

Mi
_Vi � �Ri =

X
i=1

Mi
_Vi �
X
j

@Ri

@qj
�qj

=
X
j

X
i

Mi
_Vi �

@Ri

@qj
�qj

Look at the inner sum, and consider it as one term of the derivative of a product, so thatX
i

Mi
_Vi �

@Ri

@qj
=

d

dt

X
i

MiVi �
@Ri

@qj
�
X
i

MiVi �
d

dt

�
@Ri

@qj

�
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Two substitutions are needed for use in this expression for the virtual work of the mo-
mentum derivative. The position of the ith particle is

Ri = Ri (q1; q2; q3; : : :)

and the velocity is obtained by a time di¤erentiation:

Vi =
X
j

@Ri

@qj
_qj

If the partial derivative of Vi is then taken with respect to _qj, all terms of the sum are
zero except for one, by the independence of the generalized coordinates:

dVi

d _qj
=
@Ri

@qj

In the expression for the virtual work of the momentum derivative, this will replace the
�rst term on the right-hand side.

For the second substitution, consider once again the expression for the position of the ith

particle and di¤erentiate:

Ri = Ri (q1; q2; q3; : : :)

d

dt

@Ri

@qj
=
X
k

@2Ri

@qk@qj
_qk

=
@

@qj

X
k

@Ri

@qk
_qk

=
@Vi

@qj

This is used as a replacement in the �nal term of the virtual work of the momentum
derivative. When these substitutions are made, the momentum derivative factor becomes

X
i

Mi
_Vi �

@Ri

@qj
=

d

dt

X
i

MiVi �
dVi

d _qj
�
X
i

MiVi �
@Vi

@qj

=
d

dt

@

@ _qj

 
1

2

X
i

MiVi �Vi

!
� @

@qj

 
1

2

X
i

MiVi �Vi

!

=
d

dt

@T

@ _qj
� @T

@qj
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The virtual work of the momentum derivative is then simply

X
i=1

Mi
_Vi � �Ri =

X
j

�
d

dt

@T

@ _qj
� @T

@qj

�

This is the most signi�cant part of the derivation; it shows the relation of the momentum
derivative (the mass � acceleration term of Newton�s Second Law) to be a combination
of derivatives of the kinetic energy.

The virtual work of the external forces is expressed in the usual manner, leading to the
de�nition of the generalized forces Qj (see Section 6.2):

Ri = Ri (q1; q2; q3; : : :)

�Ri =
X
j

@Ri

@qj
�qj

X
i

Fi � �Ri =
X
i

Fi �
X
j

@Ri

@qj
�qj

=
X
j

X
i

Fi �
@Ri

@qj
�qj

=
X
j

Qj �qj

where

Qj =
X
i

Fi �
@Ri

@qj

After the virtual work of the workless constraints is dropped, the virtual work equation
reads

�W =
X
i

Fi � �Ri �
X
i

Mi
_Vi � �Ri = 0

The several results developed earlier in this section can then be used in this equation to
give X

i

Qi�qi �
X
j

�
d

dt

@T

@ _qj
� @T

@qj

�
�qj = 0

or X
j

�
Qj �

d

dt

@T

@ _qj
� @T

@qj

�
�qj = 0
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The generalized coordinates are independent, so the coe¢ cient of each �qj must vanish
to assure the vanishing of the sum. This gives the �rst form for the Lagrange equation
of motion, which is written as follows:

d

dt

@T

@ _qj
� @T

@qj
= Qj

In the preceding development, the generalized coordinates are considered as independent,
as they are throughout this book. This is true for holonomic systems, which are systems
that involve only holonomic constraints (discussed in Section 2.7). The extension of the
Lagrange equation to nonholonomic systems is accomplished using the Lagrange mul-
tiplier technique [2]. This technique involves introducing the nonholonomic constraint
equations, each with an unknown multiplier. When the solution is obtained, the multi-
plier values are determined, and they can be interpreted as the forces required to enforce
the constraints.
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Appendix 8

Shaft Bending De�ections

A8.1 Introduction

The Euler-Bernoulli di¤erential equation for the deformed neutral �ber of a beam in
bending is commonly presented in elementary courses in mechanics of materials. In such
courses, the EI product (=Young�s Modulus Area � Moment of Inertia of the cross
section) appearing in that di¤erential equation is nearly always assumed to be constant
over the length of the beam. In real machines, a constant value is rarely found in power
transmission shafts or bean structures. Such shafts frequently involve a sequence of
di¤erent diameters to provide shoulders for locating bearing, mounted components, etc.
Such shafts are de�nitely a part of the present study, and their de�ection analysis is an
essential part of the study of shaft vibration and whirl. For this reason, it is appropriate
that Mischke�s method be developed for use in this context. While the development
below is in terms of a nonuniform solid circular shaft, it should be kept in mind that it
is easily extended to nonuniform hollow shafts or to nonuniform beams.

Consider a shaft of length L on simple supports and subject to discreet loads only (dis-
tributed loads can easily be approximated as a sequence of several discrete loads). The
left end is located at x = 0, and the right end is at x = L: The two simple supports can
be at any locations; they need not be at the ends. The beam is modelled as a sequence
of n node locations, xi, such that

� there is a node at each end;

� there is a node at each support;

� there is a node at every discrete load location;

� there is a node at every change in diameter.
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It is further assumed that there is no externally applied load on the shaft at a support
node, so that the support reaction is the only force acting at a support.

The externally applied loads are denoted as Fi, where i is the index for the node where
the load acts. All forces are taken positive in which ever direction is assumed for positive
de�ections.

A8.2 External Reactions

The shaft is understood to be simply supported, so let the support locations be denoted
as xL and xR and the support reactions RL and RR are determined by taking moments
about the supports:

RL =
�1

(xR � xL)

nX
i=1

(xR � xi)Fi

RR =
�1

(xR � xL)

nX
i=1

(xi � xL)Fi

With the reactions known, they can be included in the list of Fi, and treated like any
other external load acting on the beam; this is understood to be done.

A8.3 Beam Theory

The Euler-Bernoulli beam bending description says

EI (x)
d2y

d2x
= m (x)

where

E = Young�s modulus for the shaft material

I (x) = �
64
[d (x)]4 = area moment of inertia of the cross section

y (x) = shaft de�ection at x

m (x) = internal bending moment at x
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For a shaft loaded by only a set of discrete forces (including the support reactions), the
shear diagram is a sequence of positive and negative steps. When the shear is integrated
to express the bending moment, the result is a series of linear ramps, rising and falling
as dictated by the shear diagram. The application of the trapezoidal rule for numerical
integration of the bending diagram is exact, and has long been advocated [1]. Mischke�s
insight was to observe that while the trapezoidal rule is inexact for the necessary second
integration to obtain the de�ection, Simpson�s rule integration can be done exactly [2; 3].
He proposed a simple way to evaluate the function at the middle of each interval and
thus facilitated the application of Simpson�s rule.

A8.3.1 Details of the Process

The problem is to solve the ordinary di¤erential equation

y00 (x) =
m (x)

EI (x)

subject to the boundary conditions

y (xL) = 0

y (xR) = 0

At least in principle, this can be done by direct integration,

y0 (x) =

Z x

0

m (x)

EI (x)
dx+ c1

= I1 (x) + c1

where I1 (x) is the indicated de�nite integral. Then a second integration give the de�ec-
tion function,

y (x) =

Z x

0

[I1 (x) + c1] dx

= I2 (x) + c1x+ c2

where c1 and c2 are constants yet to be determined to match the boundary conditions.
The boundary conditions require that

I2 (xL) + c1xL + c2 = 0

I2 (xR) + c1xR + c2 = 0
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This gives the constants as

c1 = � [I2 (xR)� I2 (xL)] = (xR � xL)

c2 = [xLI2 (xR)� xRI2 (xL)] = (xR � xL)

What remains is to determine the functions I1 (x) and I2 (x). Consider the integration
from xi�1 to xi, where I1 (xi�1) and I2 (xi�1) are known. Trapezoidal integration is exact
for integration of y00 to obtain I1 (xi) and also to obtain I�1 = I1 [(x1 + x2) =2], the mid-
point value. Thus

I�1 = I1 (xi�1) + (xi � xi�1)

�
3

2
y00i�1 +

1

2
y00i

�
=4

I1 (xi) = I1 (xi�1) + (xi � xi�1)
�
y00i�1 + y00i

�
=2

With values now available for I1 (xi�1) ; I�1 ; and I1 (xi), Simpson�s Rule is then applied to
produce I2 (xi)

I2 (xi) = I2 (xi�1) + [I1 (xi�1) + 4I
�
1 + I1 (xi)] =6

Finally, the de�ection is
yi = y (xi) = I2 (xi) + c1xi + c2

Doughty applied this method to the calculation of rotor shaft �exibility matrices and
showed how it could be employed to incorporate additional supports (the statically in-
determinate shaft) [4].

A8.3.2 Example

Consider the simply supported shaft shown in Figure A8.1. Note that all dimensions
shown are in millimeters, but all calculations are made with lengths in meters. The
material is steel, E = 2:07 � 1011 Pa. For the application of the ideas above, the model
requires eleven node points. The working loads are F3 = 76225 N (downward) and
F9 = 86450 N (downward).

A program implementing Mischke�s method is given below. When applied to the system
as given, the bearing support loads are RL = 74454 N and RR = 91221 N . The right
bearing load is considered unacceptably high for the smaller shaft diameter at that lo-
cation, so the engineers want to consider the possible application of a third bearing at
station B (station 6). This will provide a larger diameter for the bearing, and also relieve
some of the mid-span sag in the initial design.

Mechanics of Machines c 2019 Samuel Doughty



A8.3. BEAM THEORY 635

Figure A8.1: Simply Supported Steel Shaft

In order to evaluate a possible additional bearing, the shaft is analyzed without the
working loads, but only with a 1 N load applied at station 6. With the 1 N load at station
6 (section B), the de�ection at that station is y61 = �5:6050297 � 10�9 m. With only the
normal working loads (F3 and F9), the de�ection at station 6 was y62 = �5:9221548 �10�4
m, so this is the amount that a mid-span bearing will have to lift the shaft at station 6
in order to properly align the shaft. To do so, the load on the proposed bearing at 6 is
F6

F6 = y62=y61 = 105657:87 N

The analysis program can only deal with simply supported shafts, but the case with
three bearings can be evaluated by running the program with the force F6 added to the
externally applied loads, in e¤ect applying the bearing force as a known load rather than
as a reaction to be determined. When this is done, the results are as shown in Table
A8.1.

Note that the application of the bearing load at B decreases the displacement at that
point e¤ectively to zero (calculated as 4 � 10�19 m) which is what should be expected.
This also relieves the bearing load on both of the two outboard bearings, with the new
bearing picking up the major part of the load.

A program listing for computing the de�ections of a simply supported nonuniform shaft
by Mischke�s Method, program Shaft.Tru, follows. The built-in data are for the example
problem just above with only the working loads included on two bearings. It is easily
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modi�ed to other purposes

Table A8.1 Mischke Beam De�ection

Calculation for Three Bearing Shaft

node x (i) y (i) � 105 y0 (i) � 104 F (i)

i m m � N

1 0:000 +0:0000 �6:2824 34214 Bearing

2 0:135 �6:0711 �0:9266

3 0:155 �6:1393 +0:2722 �76225 Applied Load

4 0:175 �5:9635 +1:4522

5 0:375 �0:2626 +1:8926

6 0:395 +4:33 � 10�14 +0:6948 105658 Bearing Load

7 0:415 +0:0192 �0:4436

8 0:477 �1:1725 �2:5133

9 0:507 �1:7759 �1:2125 �86450 Applied Load

10 0:537 �1:8428 +0:6600

11 0:610 0:0000 3:4567 22804 Bearing

! Shaft.Tru
! Stepped shaft deflection calculations by Mischke�s Method
OPTION BASE 1
OPTION NOLET
DIM x(20),y(20),yp(20),diam(20),EI(20),Fext(20),mom(20)
DIM MEIL(20),MEIR(20),Int1(20),Int2(20)
CLEAR
! x(i) node axial position
! y(i) deflection at node i
! yp(i) slope at node i
! diam(i) shaft diameter to right of node i
! EI(i) EI(x) for shaft to right of node i
! Fext(i) externally applied load values
! MEIL(i) moment to left of node i
! MEIR(i) moment to right of node i
! xL left bearing node location
! iL left bearing node number
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! iR right bearing node number
! xR right bearing node location
! RL left bearing reaction force
! RR right bearing reaction force
! Int1 first integral of M/EI
! Int2 second integral of M/EI

! Data for Example Problem
E=2.07e11 ! Young�s modulus
n=11 ! number of nodes
x(1)=0.0 ! node A
x(2)=0.135 ! node B, shoulder
x(3)=0.155 ! node C, load Fc
x(4)=0.175 ! node D, shoulder
x(5)=0.375 ! node E, load Fe
x(6)=0.395 ! node F, shoulder
x(7)=0.415 ! node G, end of shaft
x(8)=0.477
x(9)=0.507
x(10)=0.537
x(11)=0.610
diam(1)=0.087
diam(2)=0.095
diam(3)=0.095
diam(4)=0.104
diam(5)=0.092
diam(6)=0.092
diam(7)=0.082
diam(8)=0.075
diam(9)=0.075
diam(10)=0.068
MAT Fext=zer
Fext(3)=-76225 ! load at 3, down
Fext(9)=-86450 ! load at 9, down
xL=x(1) ! left support location
xR=x(11) ! right support location
iL=1
iR=11

! Calculate Reactions
FOR i=1 to n

sL=sL+(xR-x(i))*Fext(i) ! right end moment sum
sR=sR+(x(i)-xL)*Fext(i) ! left end moment sum

NEXT i

Mechanics of Machines c 2019 Samuel Doughty



638 APPENDIX 8. SHAFT BENDING DEFLECTIONS

RL=-sL/(xR-xL) ! reaction force left
RR=-sR/(xR-xL) ! reaction force right
Fext(iL)=RL ! add reactions to force list
Fext(iR)=RR

! Computer M(x)/EI(x) ...
FOR i=1 to n-1

AMOI=pi/64*diam(i)^4 ! area MOI for circular shaft
EI(i)=E*AMOI ! EI to the right of x(i)

NEXT i

! Develop moment values
! MEIL moment/EI left of node
! MEIR moment/EI right of node
mom(1)=0 ! actual moment function
shear=Fext(1)
FOR i=2 to n

deltaX=x(i)-x(i-1)
mom(i)=mom(i-1)+shear*deltaX ! moment at node i
shear=shear+Fext(i) ! shear force to right of i

NEXT i
FOR i=2 to n

MEIR(i-1)=mom(i-1)/EI(i-1)
MEIL(i)=Mom(i)/EI(i-1)

NEXT i

! Compute Int1 and Int2
Int1(1)=0
Int2(1)=0
FOR i=2 to n

deltaX=x(i)-x(i-1)
Int1(i)=Int1(i-1)+deltaX*(MEIR(i-1)+MEIL(i))/2
Istar=Int1(i-1)+deltaX*(3*MEIR(i-1)/2+MEIL(i)/2)/4
Int2(i)=Int2(i-1)+deltaX*(Int1(i-1)+4*Istar+Int1(i))/6

NEXT I
! Compute integration constants c1 and c2
c1=-(Int2(iR)-Int2(iL))/(xR-xL)
c2=-xR*Int2(iL)-xL*Int2(iR)/(xR-xL)
! Compute Slopes and Deflections
FOR i=1 to n

yp(i)=Int1(i)+c1 ! slope
y(i)=Int2(i)+c1*x(i)+c2 ! deflection

NEXT i
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PRINT
PRINT " Stepped Shaft Deflection Calculations by Mischke�s Numerical Method"
PRINT
hdr$=" node x(i) Defl Slope Fext(i)"
PRINT
img$=" ## ###.#### +#.####^^^^ +#.####^^^^ +#.####^^^^ ############"
PRINT hdr$
FOR i=1 to n

com$=""
IF i=iL or i=iR then com$="Reaction"
PRINT using img$: i,x(i),y(i),yp(i),Fext(i),com$

NEXT i
END
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Appendix 9

Rayleigh�s Method

A9.1 Introduction

Rayleigh�s Method is a device for approximating the lowest natural frequency of a vibra-
tory system. As Rayleigh�s Method was originally presented [1] the potential energy of
the system was calculated using the common expression for beam bending strain energy
based on the square of the bending moment function

V =
1

2

Z L

0

EI [y00 (x; t)] dx

where

V = strain energy

E = Young�s modulus

I = section area moment of inertia

y (x; t) = transverse displacement of the beam at location x and time t

The kinetic energy was similarly based on summing the incremental contributions

T =
1

2

Z L

0

� [ _y (x; t)]2 dx

where

� = mass per unit length of the beam

Mechanics of Machines 641 c 2019 Samuel Doughty



642 APPENDIX 9. RAYLEIGH�S METHOD

If it is assumed that
y (x; t) = � (x) sin!t

these two integral expressions become

V =
1

2
sin2 !t

Z L

0

EI [�00 (x)]
2
dx

T =
1

2
!2 cos2 !t

Z L

0

� [� (x)]2 dx

By conservation of energy, VMax = TMax gives Rayleigh�s result

!2 =

Z L

0

EI [�00 (x)]
2
dxZ L

0

� [� (x)]2 dx

(A)

This is the classic form for the Rayleigh Quotient, an expression for the square of the
natural frequency.

In application, the user is required to make an educated guess for the form for � (x),
choosing a function that satis�es the essential boundary conditions. In most applications,
there are multiple possible choices for � (x), some better than others.

A9.2 Objections

There are, however, di¢ culties in the application of Rayleigh�s original formulation. A
function that super�cially appears to be a satisfactory approximation to the dynamic
mode shape may have serious errors when di¤erentiated twice and used in the numerator
integral. This has led a number of authors [2; 3; 4; 5] to propose an alternate form for
Rayleigh�s method. Consider a beam for which either (a) a lumped mass model has been
de�ned, or (b) the beam mass is considered negligible in comparison to a set of discrete
loads Wi acting on the beam. The modi�ed form is equation (B):

!2 =
g (W1y1 +W2y2 + � � �Wnyn)

W1y21 +W2y22 + � � �Wny2n
(B)

If the acceleration of gravity is moved to the denominator as a divisor, the denominator
sum is readily seen as the �nite approximation to the denominator integral in equation
(A) above, assuming that the factor 1=2 has been canceled with a similar factor in the
numerator. But how is the numerator sum justi�ed? The numerator sum looks nothing
at all like the numerator integral above.
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A9.3 Alternate Forms Justi�ed

There are at least two alternative forms commonly used for Rayleigh�s method. The
�rst is equation (B) above, and the second is a related form often used with matrix
formulations.

A9.3.1 First Alternative Form, Equation (B)

The numerator represents the maximum value of the work done by the loads that deform
the beam. Because of the nature of beam behavior, a load at one location results in
de�ections at most other points in the beam, so this is not the simple case of loading
individual springs. Considering a lumped mass model, the force-de�ection relation is of
the form

ffg = [K] fyg
fyg = [S] ffg

where

ffg is any set of discrete loads

fyg the set of de�ections associated with ffg

[K] is the sti¤ness matrix

[S] is the �exibility matrix

Suppose that the actual loads to be imposed consists of a set of weights, fWg =
col (W1;W2; :::Wn). This set of weights can be imposed gradually by letting

ffg = c fWg 0 � c � 1

where c is simply a variable scalar multiplier. At full load the de�ections are fY g, where

fWg = [K] fY g

For something less than the full load, with c < 1, it is true that

ffg = c fWg
fyg = c fY g
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The di¤erential work done in loading the structure is d (Work)

d (Work) = ffgT fdyg
= fY gT fWg c dc

The total work is found by integration on c from zero to one,

Work = VMax =
1

2
(W1Y1 +W2Y2 + � � �+WnYn) (C)

For the kinetic energy of the beam, remembering that dMc is diagonal, the total kinetic
energy is

T =
1

2g
!2 cos2 !t

�
W1y

2
1 +W2y

2
2 + � � �+Wny

2
n

�
When the maximum value is taken and the ratio formed, the result is

!2 =
g (W1Y1 +W2Y2 + � � �+WnYn)

(W1Y 2
1 +W2Y 2

2 + � � �+WnY 2
n )

(D)

Equation (D) is the equation (B) mentioned in the previous section.

When using a estimate for the deformation shape fY g (the �rst mode vector), it is vitally
important that realistic estimates be used for the Yi values. They cannot be scaled
arbitrarily, but must be the result of an accurate estimate. This is usually done by
using a static de�ection calculations.

A9.3.2 A Second Alternative Form

The development above also suggests another alternative form. Return to the di¤erential
work expression just before equation (C),

d (Work) = ffgT fdyg
= fY gT [K] fY g c dc

Again integrating, the result is

Work =
1

2
fY gT [K] fY g

This leads to the second alternative form for Rayleigh�s natural frequency approximation

!2 =
fY gT [K] fY g
fY gT dMc fY g

(E)
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This is a form often seen in matrix formulations of the vibration problem. Assume for
a moment that the fY g are true eigenvectors. In this case, the triple matrix product in
the numerator is the modal sti¤ness, K, (which is equal to !2M). Also, for this case,
the denominator triple product is M, the modal mass for the fundamental mode. Thus,
with true eigenvectors, the ratio reduces to an identity. With true eigenvectors employed,
scaling is unimportant. This is a distinct di¤erence between equations (D) and (E). The
only problem here is that, if the true eigensolutions are already known, there is no need
to estimate the �rst eigenvalue.
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pivoted roller follower, 148
translating radial roller follower, 139
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ChoJac.Tru, 400, 417, 548, 550
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Fraiser Duncan and Collar (FDC) Formu-
lation, 409

gears, 153
base circle, 158, 159, 165
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diametral pitch, 169
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fundamental law, 157
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involute function, 160
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module, 169
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planetary, 165
pressure angle, 163
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actual, 167
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relatively prime, 176
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trains, 173
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500

impulse response, 376
induction motor, 597
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Gärtner-Kloss model, 510, 607
Kloss model, 606
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torque-speed curve, 603

in�uence coe¢ cients, 415
instability, 507
internal forces, 302, 432

Jacobian, 30, 36, 45�47, 52, 63, 68, 89, 558

kinetic energy, 227, 231, 241, 255, 269�271,
282, 290, 426, 621, 628, 641

IC engine, 229
slider-crank, 456
trammel, 250

Lagrange, 2, 271, 272, 274, 277, 282, 288,
293, 301, 303, 393, 475, 482, 515,
625

Laplace, 369, 372, 374
linearization, 377, 477
logarithmic decrement, 351

modal response, 402
modal transformation, 401, 519

modal mass, 401
modal sti¤ness, 401

Newington Station, 427
Newton-Raphson, 31, 44�47, 63, 94, 102,

160, 557

Pennsylvania Turnpike, 508
position loop equations, 29, 30, 35, 44, 47,

59, 61, 62, 70, 87, 89, 94, 103, 136,
155, 261, 481
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475, 477, 499, 502

stability, 212, 382
rotordynamic, 420

steady state, 258, 313, 319, 321, 352, 358,
407, 428, 447, 478, 482

torsional vibration, 99, 156, 447, 449, 450,
498, 507

electric motor damping, 469
excitations, 471
geared system, 469
generator damping, 469
pendulum absorber, 276, 434, 467, 480
station-to-ground damping, 466
station-to-station damping, 466
steady state, 478
steady twist, 479
viscous damping, 466

trammel, 31, 209, 249, 304, 309, 380
transient, 352

unit step function, 372

velocity coe¢ cient, 2, 27, 32, 40, 207, 214,
228, 558

four-bar, 51, 64
gear, 155
slider-crank, 35

velocity coe¢ cient derivative, 2, 28, 30, 69,
71, 558

four-bar, 52, 54
slider-crank, 36, 40
trammel, 32

velocity ratio, 154
virtual displacement, 190, 191, 255, 626
virtual work, 2, 189, 190, 192, 193, 195, 198,

205, 213, 255, 274, 472, 616, 625,
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